- 1、本文档共9页,其中可免费阅读8页,需付费10金币后方可阅读剩余内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 4、文档侵权举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
本发明涉及一种基于CA/GO/OS三维联合的自适应CFAR检测方法。首先,利用参考单元及其邻近单元中的观测数据计算得到CA/GO/OS三维特征向量,形成训练样本;然后,根据给定的虚警概率,利用训练样本,结合凸包算法,求解CA/GO/OS三维联合特征空间中的决策凸包;接着,利用待检测单元及其邻近单元中的观测数据计算得到CA/GO/OS三维特征向量,形成待测样本;最后,基于该待测样本在特征空间中相对于决策凸包的位置,判断待检测单元中是否存在目标。与单一CFAR方法相比,本发明能够在均匀背景,杂波边缘
(19)国家知识产权局
(12)发明专利申请
(10)申请公布号CN117388816A
(43)申请公布日2024.01.12
(21)申请号202311189788.0
(22)申请日2023.09.15
(71)申请人中国人民解放军海军航空大学
地址
文档评论(0)