- 1、本文档共12页,其中可免费阅读11页,需付费10金币后方可阅读剩余内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 4、文档侵权举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
本发明公开了一种混合卷积的残差网络与注意力结合的动作视频识别方法。包括:1)读取动作视频中人的动作,然后将动作视频转换为原始视频帧图像;2)分别使用时间抽样、随机裁剪和亮度调整的方法对动作视频的视频帧进行数据增强,组成获得视频帧图像;3)构建注意力模块,利用注意力模块构建混合卷积块,级联混合卷积块构建基于混合卷积的残差网络与注意力结合的混合卷积残差网络模型,用混合卷积残差网络模型对视频帧图像进行时空特征学习,获取关键特征图;4)使用Softmax分类层对关键特征图进行分类。本发明在扩展网络深度的
(19)中华人民共和国国家知识产权局
(12)发明专利申请
(10)申请公布号CN112149504A
(43)申请公布日2020.12.29
(21)申请号202010849991.6
(22)申请日2020.08.21
(71)申请人浙江理工大学
地址
文档评论(0)