人工智能论文20220806 2022PhD Northwestern Accelerating Materials Study and Discovery through Machine Learning.pdfVIP

人工智能论文20220806 2022PhD Northwestern Accelerating Materials Study and Discovery through Machine Learning.pdf

  1. 1、本文档被系统程序自动判定探测到侵权嫌疑,本站暂时做下架处理。
  2. 2、如果您确认为侵权,可联系本站左侧在线QQ客服请求删除。我们会保证在24小时内做出处理,应急电话:400-050-0827。
  3. 3、此文档由网友上传,因疑似侵权的原因,本站不提供该文档下载,只提供部分内容试读。如果您是出版社/作者,看到后可认领文档,您也可以联系本站进行批量认领。
查看更多

NORTHWESTERNUNIVERSITY

AcceleratingMaterialsStudyandDiscoverythroughMachineLearning

ADISSERTATION

SUBMITTEDTOTHEGRADUATESCHOOL

INPARTIALFULFILLMENTOFTHEREQUIREMENTS

forthedegree

DOCTOROFPHILOSOPHY

FieldofMaterialsScienceandEngineering

By

CheolWooPark

EVANSTON,ILLINOIS

March2022

2

Abstract

Despitetheunprecedentedpaceatwhichtechnologyisadvancingnowadays,itswider

useandapplicationareoftenlimitedbytheavailabilityoflow-cost,high-performancematerials.

Thedevelopmentofbettermaterialsisoftencostlyandtime-consumingduetothesheersizeof

thesearchspaceofanewmaterial.Recently,data-drivenmaterialsdesignthroughmachine

learningtechniqueshavegainedmuchinterestforitspotentialtoacceleratethematerials

discoveryandcharacterizationbyordersofmagnitudecomparedtoconventionalcomputational

methodssuchasdensityfunctionaltheory(DFT).Thisthesisisfocusedonthedevelopmentof

machinelearningalgorithmsfortwoobjectives.Thefirstobjectiveistoacceleratethediscovery

ofnewstablematerialsthroughhigh-throughputstudiesbyaccuratelyscreeningforpotential

stablecompounds.Towardsthisend,wedevelopedtheiCGCNNandvi-iCGCNNwhichutilize

crystalgraphrepresentationsofinorganicmaterialsthatcanbeusedasinputforneuralnetworks.

Weshowausecaseofthevi-iCGCNNinpredictingalternativesuperhardmaterials.Thesecond

objectiveistoacceleratematerialcharacterizationthroughmoleculardynamicsimulations.To

achievethis,we

您可能关注的文档

文档评论(0)

科幻小说家鞋子其 + 关注
实名认证
服务提供商

喜欢文学创作和诗歌散文小说

1亿VIP精品文档

相关文档