网站大量收购闲置独家精品文档,联系QQ:2885784924

大数据与人工智能的关系.docx

  1. 1、本文档共2页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

大数据与人工智能的关系

大数据与人工智能有什么关系呢?AI本身就是一种大数据的应用,特别是在对于AI系统进行训练的时候,使用的数据越多,AI系统就越先进。也就是说对于人工智能系统进行训练使用的数据量越大,数据质量越好,人工智能系统的质量就越高,从这个意义上来说AI本身也是一种大数据应用。

人工智能

机器学习

深度学习

大数据平台

机器学习是人工智能的子集,深度学习是机器学习的子集,但是深度学习的影响是最大的,比如图像识别、语音识别、语义识别。

常用框架:

Scikit-Learn:基于Python语言的机器学习工具,该算法库显得较为保守。这主要体现在两个方面:一是Scikit-learn从来不做除机器学习领域之外的其他扩展,二是Scikit-learn从来不采用未经广泛验证的算法。

Tensorflow:适合所有人的开放源代码机器学习框架。?是一个开放源代码软件库,用于进行高性能数值计算。借助其灵活的架构,可以轻松地将计算工作部署到多种平台(CPU、GPU、TPU)和设备上(桌面设备、服务器集群、移动设备、边缘设备等)。可为机器学习和深度学习提供强力支持,并且其灵活的数值计算核心广泛应用于许多其他科学领域。

Caffe(ConvolutionalArchitectureforFastFeatureEmbedding):是一种常用的深度学习框架,主要应用在视频、图像处理方面的应用上。既可以在CPU上运行也可以在GPU上运行,并提供了一个完整的工具包,用来训练、测试、微调和部署模型。

CNTK:Microsoft计算网络工具包(CNTK)是一个非常强大的命令行系统,可以创建神经网络预测系统。其真正用途在于与深度神经网络(具有两个或多个隐藏层,且节点之间可能存在复杂连接的网络)协同工作。

Keras:是一个用Python编写的高级神经网络API,它能够以?TensorFlow,?CNTK,或者?Theano?作为后端运行。Keras的开发重点是支持快速的实验。遵循减少认知困难的最佳实践,提供一致且简单的API,它将常见用例所需的用户操作数量降至最低,并且在用户错误时提供清晰和可操作的反馈。KerasAPI可以与TensorFlow工作流无缝集成。

PyTorch:是一个基于Python的深度学习平台,其前身是Torch。其简单易用上手快并且功能强大,从计算机视觉、自然语言处理再到深度强化学习功能等。

Paddlepaddle(PArallelDistributedDeepLearning):是百度旗下一个易用、高效、灵活、可扩展的深度学习框架,兼容多种异构硬件,具有优异的训练预测性能,官方支持多种领先模型,提供全流程的深度学习模块和组件,覆盖图像分类、个性化推荐、机器翻译等多个深度领域。

文档评论(0)

朝兵 + 关注
实名认证
内容提供者

原版文件原创

1亿VIP精品文档

相关文档