- 1、本文档共20页,其中可免费阅读19页,需付费10金币后方可阅读剩余内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 4、文档侵权举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
本发明公布了一种基于模型与数据驱动深度学习算法的地震多次波压制方法,构建用于多次波压制的模型与数据驱动的深度学习模型,提取地震数据标签,并以包含一次波和多次波的全波场炮集为模型的输入,模型的输出即为压制多次波后的一次波炮集。本发明通过残差傅里叶子模块在网络架构中结合傅里叶算子和残差网络,在时间域的通道维度、时间维度及频率域提取多次波特征,使网络能够准确高效地实现多次波压制,可实现深度模拟复杂的多次波压制处理,且具有良好的抗噪性和泛化能力。本发明技术方案可用于提高地震多次波压制的精度和效率。
(19)国家知识产权局
(12)发明专利申请
(10)申请公布号CN115267911A
(43)申请公布日2022.11.01
(21)申请号202210914617.9
(22)申请日2022.08.01
(71)申请人北京大学
地址100871北京
文档评论(0)