- 1、本文档共28页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
液晶电光效应
LiquidCrystalElectro-OpticEffect三级物理实验内容简介液晶介绍实验目的实验原理实验仪器实验内容及步骤思考题液晶介绍液晶的电光效应是指它的干涉、散射、衍射、旋光、吸收等受电场调制的光学现象影响液晶性能的主要参数:
清亮点;折射率Δn;阀值电压;纯净度;粘滞常数K;介电常数ε;螺距ρ1888年,奥地利叫莱尼茨尔的科学家,合成了一种奇怪的有机化合物,它有两个熔点。把它的固态晶体加热到145℃时,便熔成液体,只不过是浑浊的,而一切纯净物质熔化时却是透明的。如果继续加热到175℃时,它似乎再次熔化,变成清澈透明的液体。后来,德国物理学家列曼把处于“中间地带”的浑浊液体叫做液晶。它好比是既不象马,又不象驴的骡子,所以有人称它为有机界的骡子.液晶自被发现后,人们并不知道它有何用途,直到1968年,人们才把它作为电子工业上的材料.1963年,RCA公司的威利阿姆斯发现了用电刺激液晶时,其透光方式会改变。5年后,同一公司的哈伊卢马以亚小组,发明了应用此性质的显示装置。这就是液晶显示屏(LiquidCrystalDisplay)的开端。而当初,液晶作为显示屏的材料来说,是很不稳定的。因此作为商业利用,尚存在着问题。然而,1973年,格雷教授(英国哈尔大学)发现了稳定的液晶材料(联苯系)。1976年,由SHARP公司在世界上首次,将其应用于计算器(EL-8025)的显示屏中,此材料目前已成为LCD材料的基础。液晶历史液晶分类热致液晶(thermotropicLC)向列相(nematic)例如:油酸铵CH3(CH2)7CH=CH(CH2)7COONH4近晶相(smectic)例如:对氧化偶氮苯甲醚:CH3OC6H4(NO)=NC6H4OCH3胆甾相(cholesteric)例如:苯甲酸胆甾酶酯:C6H5COOC27H45碟型(discotic)溶致液晶(lyotropicLC)重现性液晶(recentrantLC)按显示类型分:TN型液晶、STN型液晶、HTN型液晶;按清亮点分:普通型液晶、宽温型液晶;按阀值电压分:低阀值电压液晶、普通液晶、高阀值电压液晶。向列相是最简单的液晶相,它的分子成棒状,局部地区的分子趋向于沿同一方向排列。分子短程相互作用比较弱,其排列和运动比较自由,分子这种排列状态使其粘度小、流动性强。向列相液晶的主要特点是具有单轴晶体的光学性质,对外界作用非常敏感,是液晶显示器件的主要材料。热致液晶之向列相近晶型结构是所有液晶中具有最接近结晶结构的一类。近晶相液晶分子也成棒状,分子排列成层,每层分子长轴方向是一致的,但分子长轴与层面都呈一定的角度。层的厚度约等于分子的长度,各层之间的距离可以变动。由于分子层内分子结合力强,层与层间结合力弱,所以这种液晶有流动性,但粘度比向列相液晶大。近晶相液晶具有正性双折射性,因此,近晶相液晶显示器件比向列相液晶显示器件的特性更优越。热致液晶之近晶相它的分子呈扁平层状排列,分子长轴平行层平面,层内各分子长轴互相平行(对应方向)相邻两层内的分子长轴方向有微小扭转角,各层分子指向矢,沿着层的法线方向连续均匀旋转,使液晶整体结构形成螺旋结构,螺旋扭转360°的两个层面的距离叫做螺距,用L表示,通常L为102nm的数量级。这种特殊的螺旋状结构使得该种晶体具有明显的旋光性、圆偏振光二向色性以及选择性光散射等特殊光学性质。因此,常将胆甾相液晶作为控制液晶分子排列的添加剂或直接作为变色液晶膜热致液晶之胆甾相溶致液晶溶致液晶是由两种或两种以上的组分形成的液晶,其中一种是水或其它的极性溶剂。这是将一种溶质溶于一种溶剂而形成的液晶态物质。典型的溶质部分是由一个具有一端为亲水集团,另一端为疏水集团的双亲分子构成的。如十二烷基磺酸钠或脂肪酸钠肥皂等碱金属脂肪盐类等。它的溶剂是水,当这些溶质溶于水后,在不同的浓度下,由于双亲分子亲水、疏水集团的作用会形成不同的核心相(middle)和层相(lamella),核心相为球形或柱形。层相则由与近晶相相似的层式排布构成。溶致液晶中的长棒状溶质分子一般要比构成热致液晶的长棒状分子大得多,分子轴比约在15左右。最常见的有肥皂水,洗衣粉溶液,表面活化剂溶液等。溶质与溶质之间的相互作用是次要的。由于分子的有序排布必然给这种溶液带来某种晶体的特性。例如光学的异向性,电学的异向性,以至于亲合力的异向性。例如肥皂泡表面的彩虹及洗涤作用就是这种异向性的体现。溶致液晶不同于热致液晶。它们广泛存在于大自然界、生物体内,并被不知不觉应用于人类生活的
文档评论(0)