钳位电路介绍.docVIP

  1. 1、本文档共7页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多

反激式电源中MOSFET的钳位电路

输出功率100W以下的AC/DC电源通常都采用反激式拓扑结构。这种电源成本较低,使用一个控制器就能提供多路输出跟踪,因此受到设计师们的青睐,且已成为元件数少的AC/DC转换器的标准设计结构。不过,反激式电源的一个缺点是会对初级开关元件产生高应力。

反激式拓扑结构的工作原理,是在电源导通期间将能量储存在变压器中,在关断期间再将这些能量传递到输出。反激式变压器由一个磁芯上的两个或多个耦合绕组构成,激磁能量在被传递到次级之前,一直储存在磁芯的串联气隙间。实际上,绕组之间的耦合从不会达到完美匹配,并且不是所有的能量都通过该气隙进行传递。少量的能源储存在绕组内和绕组之间,这部分能量被称为变压器漏感。开关断开后,漏感能量不会传递到次级,而是在变压器初级绕组和开关之间产生高压尖峰。此外,还会在断开的开关和初级绕组的等效电容与变压器的漏感之间,产生高频振铃(图1)。

图1:漏感产生的漏极节点开关瞬态

如果该尖峰的峰值电压超过开关元件(通常为功率MOSFET)的击穿电压,就会导致破坏性故障。此外,漏极节点的高幅振铃还会产生大量EMI。对于输出功率在约2W以上的电源来说,可以使用钳位电路来安全耗散漏感能量,达到控制MOSFET电压尖峰的目的。

钳位的工作原理

钳位电路用于将MOSFET上的最大电压控制到特定值,一旦MOSFET电压达到阈值,所有额外的漏感能量都会转移到钳位电路,或者先储存起来慢慢耗散,或者重新送回主电路。钳位的一个缺点是它会耗散功率并降低效率,因此,有许多不同类型的钳位电路可供选择(图2)。有多种钳位使用齐纳二极管来降低功耗,但它们会在齐纳二极管快速导通时增加EMI的产生量。RCD钳位能够很好地平衡效率、EMI产生量和成本,因此最为常用。

图2:不同类型的钳位电路

钳位

RCD钳位的工作原理为:MOSFET关断后,次级二极管立即保持反向偏置,励磁电流对漏极电容充电(图3a)。当初级绕组电压达到由变压器匝数所定义的反射输出电压(VOR)时,次级二极管关断,励磁能量传递到次级。漏感能量继续对变压器和漏极电容充电,直到初级绕组电压等于箝位电容电压(图3b)。

图3:RCD钳位电路的初级侧钳位

Vc=钳位电压

此时,阻断二极管导通,漏感能量被转移到钳位电容(图4a)。经由电容吸收的充电电流将漏极节点峰值电压钳位到VIN(MAX)+VC(MAX)。漏感能量完全转移后,阻断二极管关断,钳位电容放电到钳位电阻,直到下一个周期开始(图4b)。通常会添加一个小电阻与阻断二极管串联,以衰减在充电周期结束时变压器电感和钳位电容之间产生的任何振荡。这一完整周期会在钳位电路中造成电压纹波(称为VDELTA),纹波幅度通过调节并联电容和电阻的大小来控制(图5)。

图4:RCD钳位的工作原理

钳位电阻消耗漏感能量

RCDZ钳位与RCD钳位的工作原理相同,不同点在于它通过齐纳二极管与电阻串联来分担耗散(图2)。齐纳二极管可防止电容放电至齐纳二极管阻断电压以下,这样可限制功率耗散并提升效率,特别是在轻载时非常有用。ZD钳位对由齐纳二极管的阻断电压指定的MOSFET电压提供硬钳位。RCD+Z钳位与RCD钳位的工作方式相同,所添加的齐纳二极管对瞬态条件下的MOSFET电压提供硬钳位,并且前者在正常工作条件下的EMI生成特性,也与RCD钳位相同。

图5:RCD钳位电压的基准测量

钳位设计必须同时考虑变压器和MOSFET的特性。如果最低钳位电压低于变压器的VOR,钳位将充当一个负载,耗散的不仅仅是漏感能量。如果钳位元件过小,它们可能变得过热,无法预防危险的电压,并会产生不必要的EMI。最为重要的是,钳位必须对各种电源输入电压、负载电流和元件容差条件下的MOSFET提供保护。

PowerIntegrations公司发布的《确定钳位大小的设计指南》(PI-DG-101),对反激式电源所用到的四种主要钳位电路分别提供了确定元件大小的详细步骤。该设计指南可与PIExpert设计软件配合使用。PIExpert是一款交互式程序,它可以根据设计师的电源规格自动确定关键元件(包括变压器规格),从而完成一个有效的开关电源的设计。PIExpert可自动生成钳位设计,但其结果将比《确定钳位大小的设计指南》中的以下算法所生成的稍为保守些。

确定RCD钳位的大小

这里介绍了设计RCD钳位时需要遵循的步骤摘要。完整的细节内容,请参阅《确定钳位大小的设计指南》。下面所提到的所有值,均非由用户测量或定义,可在PIExpert的设计结果选项卡中找到。

1.测量变压器的初级漏感LL。

2.检查您的设计的开关频率

文档评论(0)

duantoufa005 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档