《统计分析与SPSS应用(第五版)》课后练习答案(第9章) .pdf

《统计分析与SPSS应用(第五版)》课后练习答案(第9章) .pdf

  1. 1、本文档共16页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

《统计分析与SPSS的应用(第五版)》(薛薇)

课后练习答案

第9章SPSS的线性回归分析

1、利用第2章第9题的数据,任意选择两门课程成绩作为解释变量和被解释变量,利用SPSS

提供的绘制散点图功能进行一元线性回归分析。请绘制全部样本以及不同性别下两门课程

成绩的散点图,并在图上绘制三条回归直线,其中,第一条针对全体样本,第二和第三条

分别针对男生样本和女生样本,并对各回归直线的拟和效果进行评价。

选择fore和phy两门成绩体系散点图

步骤:图形旧对话框散点图简单散点图定义将fore导入Y轴,将phy导入X轴,将

sex导入设置标记确定。

接下来在SPSS输出查看器中,双击上图,打开图表编辑

在图表编辑器中,选择“元素”菜单选择总计拟合线选择线性应用再选择元素菜单

点击子组拟合线选择线性应用。

分析:如上图所示,通过散点图,被解释变量y(即:fore)与解释变量phy有一定

的线性关系。但回归直线的拟合效果都不是很好。

2、请说明线性回归分析与相关分析的关系是怎样的?

相关分析是回归分析的基础和前提,回归分析则是相关分析的深入和继续。相关分析需要依

靠回归分析来表现变量之间数量相关的具体形式,而回归分析则需要依靠相关分析来表现变

量之间数量变化的相关程度。只有当变量之间存在高度相关时,进行回归分析寻求其相关的

具体形式才有意义。如果在没有对变量之间是否相关以及相关方向和程度做出正确判断之

前,就进行回归分析,很容易造成“虚假回归”。与此同时,相关分析只研究变量之间相关

的方向和程度,不能推断变量之间相互关系的具体形式,也无法从一个变量的变化来推测另

一个变量的变化情况,因此,在具体应用过程中,只有把相关分析和回归分析结合起来,才

能达到研究和分析的目的。

线性回归分析是相关性回归分析的一种,研究的是一个变量的增加或减少会不会引起另一个

变量的增加或减少。

3、请说明为什么需要对线性回归方程进行统计检验?一般需要对哪些方面进行检验?

检验其可信程度并找出哪些变量的影响显著、哪些不显著。

主要包括回归方程的拟合优度检验、显著性检验、回归系数的显著性检验、残差分析等。

线性回归方程能够较好地反映被解释变量和解释变量之间的统计关系的前提是被解释

变量和解释变量之间确实存在显著的线性关系。

回归方程的显著性检验正是要检验被解释变量和解释变量之间的线性关系是否显著,用

线性模型来描述他们之间的关系是否恰当。一般包括回归系数的检验,残差分析等。

4、请说明SPSS多元线性回归分析中提供了哪几种解释变量筛选策略?

向前、向后、逐步。

5、先收集到若干年粮食总产量以及播种面积、使用化肥量、农业劳动人数等数据,请利用

建立多元线性回归方程,分析影响粮食总产量的主要因素。数据文件名为“粮食总产量.sav”。

方法:采用“前进“回归策略。

步骤:分析回归线性将粮食总产量导入因变量、其余变量导入自变量方法项选“前

进”确定。如下图:(也可向后、或逐步)

已输入/除去变量a

模型已输入变量已除去变量方法

1向前(准则:

施用化肥量(kg/

.F-to-enter的

公顷)

概率=.050)

2向前(准则:

风灾面积比例

.F-to-enter的

(%)

概率=.050)

3向前(准则:

年份.F-to-enter的

概率=.050)

4向前(准则:

总播种面积(万

文档评论(0)

135****5548 + 关注
官方认证
内容提供者

各类考试卷、真题卷

认证主体社旗县兴中文具店(个体工商户)
IP属地河南
统一社会信用代码/组织机构代码
92411327MAD627N96D

1亿VIP精品文档

相关文档