可编辑文档:计算机行业市场前景及投资研究报告:新型智算中心改造,网络大模型训练,多方案并存.pptx

可编辑文档:计算机行业市场前景及投资研究报告:新型智算中心改造,网络大模型训练,多方案并存.pptx

  1. 1、本文档共22页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

证券研究报告|2024年5月5日新型智算中心改造系列报告一:网络成大模型训练瓶颈,节点内外多方案并存

摘要?AI大模型训练和推理拉动智能算力需求快速增长。a)模型迭代和数量增长拉动AI算力需求增长:从单个模型来看,模型能力持续提升依赖于更大的训练数据量和模型参数量,对应更高的算力需求;从模型的数量来看,模型种类多样化(文生图、文生视频)和各厂商自主模型的研发,均推动算力需求的增长。b)未来AI应用爆发,推理侧算力需求快速增长:各厂商基于AI大模型开发各类AI应用,随着AI应用用户数量爆发,对应推理侧算力需求快速增长。?智算中心从集群走向超级池化。智算中心是以GPU、AI加速卡等智能算力为核心,集约化建设的新型数据中心;随着大模型普遍进入万亿规模,算力、显存、互联需求再次升级,高速互联的百卡“超级服务器”可能成为新的设备形态,智算中心将走向超级池化阶段,对设备形态、互联方案、存储、平台、散热等维度提出新的要求。?网络互联:节点内外多方案并存。1)节点内:私有方案以英伟达NVLink为代表,NVLink已经发展至第五代产品,同时支持576个GPU之间的无缝高速通信;开放技术方案以OAM和UBB为主,OCP组织定义了业内通用的AI扣卡模组形态(OAM)-基板拓扑结构(UBB)设计规范。2)节点间:主要方案为Infiniband和RoCEv2;Infiniband网络主要包括InfiniBand网卡、InfiniBand交换机、SubnetManagement(SM)、连接件组成;RoCEv2网络是一个纯分布式的网络,由支持RoCEv2的网卡和交换机、连接件、流控机制组成。InfiniBand在网络性能、集群规模、运维等方面具备显著优势。?投资建议:AI大模型的参数量和训练数据量的快速增长,对数据中心的计算、存储、网络等提出新的要求,新型智算中心是产业发展趋势;AI大模型需要部署在高速互联的多个AI芯片上,数据样本和模型结构被切分到多张卡或者节点上,卡间或节点间不仅有训练数据通信,还有模型梯度的频繁传递,对智算中心的网络互联提出新的要求,建议关注宝信软件。?风险提示:宏观经济波动、下游需求不及预期、AI伦理风险等。

目录智算中心:从集群走向超级池化01网络互联:节点内外多方案并存投资建议及风险提示0203

智能算力需求:训练数据量+参数量大幅提升,模型能力“涌现”?训练数据量+参数量大幅提升,模型能力“涌现”。根据2022年谷歌、斯坦福大学和Deepmind联合发表的《EmergentAbilitiesofLargeLanguageModels》,很多新能力在中小模型上线性放大都得不到线性的增长,模型规模必须呈指数级增长并超过某个临界点,新技能才会突飞猛进。同时,模型的参数量和数据量在一定程度下是正相关的,因为:a)在小规模数据上训练模型时,若模型参数量过大,可能出现过拟合情况;b)在大规模数据上训练模型时,若不增加模型参数量,可能造成新的知识无法存放的情况。图1:训练数据大幅提升后,模型能力“涌现”图2:模型参数大幅提升后,模型能力“涌现”资料:JasonWei等著-《EmergentAbilitiesofLargeLanguageModels》-Transactionson资料:JasonWei等著-《EmergentAbilitiesofLargeLanguageModels》-TransactionsonMachineLearningResearch(2022)-P4,国信证券经济研究所整理MachineLearningResearch(2022)-P27,国信证券经济研究所整理

智能算力需求:大模型训练+推理拉动智能算力需求快速增长?大模型训练+推理拉动智能算力需求快速增长。a)模型迭代和数量增长拉动AI算力需求增长:从单个模型来看,模型能力持续提升依赖于更大的训练数据量和模型参数量,对应更高的算力需求;从模型的数量来看,模型种类多样化(文生图、文生视频)和各厂商自主模型的研发,均推动算力需求的增长。b)未来AI应用爆发,推理侧算力需求快速增长:各厂商基于AI大模型开发各类AI应用,随着AI应用用户数量爆发,对应推理侧算力需求快速增长。图3:全球智能算力快速增长图4:中国智能算力快速增长智能算力(基于FP32计算,ZFLOPS)智能算力(基于FP16计算,EFLOPS)60504030201012001117.452.5010008006004002000812.5616.6497.1414.325922021750.230.450202120222030202020232024202520262027资料所整理:《中国算力发展指数白皮书(2

您可能关注的文档

文档评论(0)

anhuixingxing + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档