- 1、本文档共20页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
第十二章主成分分析
ij主成分分分析也称作主分量分析,是霍特林(Hotelling)在1933年首先提出。主成分分析是利用降维的思想,在损失较少信息的前提下把多个指标转化为较少的综合指标。转化生成的综合指标即称为主成分,其中每个主成分都是原始变量的线性组合,且各个主成分互不相关。Stata对主成分分析的主要内容包括:主成分估计、主成分分析的恰当性(包括负偏协方差矩阵和负偏相关系数矩阵、KMO(Kaiser-Meyer-Olkin)抽样充分性、复相关系数、共同度等指标测度)、主成分的旋转、预测、各种检验、碎石图、得分图、载荷图等。
i
j
yij
?ab
??ij,i?1,2,?,n
j?1,2,?,p
主成分的模型表达式为:
C?V?V??p
?vv?
vi?vj?0
i?1iii
??diag(?1,?2,?,?p),?1??2????p
其中,a称为得分,b称为载荷。主成分分析主要的分析方法是对相关系数矩阵(或协方差矩阵)进行特征值分析。
Stata中可以通过负偏相关系数矩阵、负相关系数平方和KMO值对主成分分析的恰当性进行分析。负偏相关系数矩阵即变量之间两两偏相关系数的负数。非对角线元素则为负的偏相关系数。如果变量之间存在较强的共性,则偏相关系数比较低。因此,如果矩阵中偏相关系数较高的个数比较多,说明某一些变量与另外一些变量的相关性比较低,主成分模型可能不适用。这时,主成分分析不能得到很好的数据约化效果。
Kaiser-Meyer-Olkin抽样充分性测度也是用于测量变量之间相关关系的强弱的重要指标,是通过比较两个变量的相关系数与偏相关系数得到的。KMO介于0于1之间。KMO越高,表明变量的共性越强。如果偏相关系数相对于相关系数比较高,则KMO比较低,主成分分析不能起到很好的数据约化效果。根据Kaiser(1974),一般的判断标准如下:0.00-0.49,不能接受(unacceptable);0.50-0.59,非常差
(miserable);0.60-0.69,勉强接受(mediocre);0.70-0.79,可以接受(middling);0.80-0.89,比较好(meritorious);0.90-1.00,非常好(marvelous)。
SMC即一个变量与其他所有变量的复相关系数的平方,也就是复回归方程的可决系数。SMC比较高表明变量的线性关系越强,共性越强,主成分分析就越合适。
成分载荷、KMO、SMC等指标都可以通过extat命令进行分析。多元方差分析是方差分析在多元中的扩展,即模型含有多个响应
变量。本章介绍多元(协)方差分析以及霍特林(Hotelling)均值向量T检验。
主成分估计
Stata可以通过变量进行主成分分析,也可以直接通过相关系数矩阵或协方差矩阵进行。
sysuseauto,clear
pcatrunkweightlengthheadroom
pcatrunkweightlengthheadroom,comp(2)covariance
webusebg2,clear
pcabg2cost*,vce(normal)
Estat
estat给出了几个非常有用的工具,包括KMO、SMC等指标。
webusebg2,clear
pcabg2cost*,vce(normal)estatanti
estatkmoestatloadings
estatresidualsestatsmc
estatsummarize
预测
Stata可以通过predict预测变量得分、拟合值和残差等。
webusebg2,clear
pcabg2cost*,vce(normal)
predictscorefitresidualq (备注:q代表残差的平方和)
碎石图
碎石图是判断保留多少个主成分的重要方法。命令为screeplot。webusebg2,clear
Screeplotofeigenvaluesafterpca1234
Screeplotofeigenvaluesafterpca
1
2
3
4
5
6
Number
Eigenvalues
1.5
1
2
.5得分图、载荷图
.5
得分图即不同主成分得分的散点图。命令为scoreplot。webusebg2,clear
pcabg2cost*,vce(normal)scoreplot
Scoresforcomponent2.3-2024
Scoresforcomponent2
.3
-2
0
文档评论(0)