电容滤波电路滤波原理.docVIP

  1. 1、本文档共8页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多

电容滤波电路滤波原理

滤波电容容量大,因此一般采用电解电容,在接线时要注意电解电容的正、负极。电容滤波电路利用电容的充、放电作用,使输出电压趋于平滑。

★当u2为正半周并且数值大于电容两端电压uC时,二极管D1和D3管导通,D2和D4管截止,电流一路流经负载电阻RL,另一路对电容C充电。当uCu2,导致D1和D3管反向偏置而截止,电容通过负载电阻RL放电,uC按指数规律缓慢下降。

★当u2为负半周幅值变化到恰好大于uC时,D2和D4因加正向电压变为导通状态,u2再次对C充电,uC上升到u2的峰值后又开场下降;下降到一定数值时D2和D4变为截止,C对RL放电,uC按指数规律下降;放电到一定数值时D1和D3变为导通,重复上述过程。

RL、C对充放电的影响

电容充电时间常数为rDC,因为二极管的rD很小,所以充电时间常数小,充电速度快;

RLC为放电时间常数,因为RL较大,放电时间常数远大于充电时间常数,因此,滤波效果取决于放电时间常数。

电容C愈大,负载电阻RL愈大,滤波后输出电压愈平滑,并且其平均值愈大,如下图。

四、电容反应式振荡电路

1.电路组成

为了获得较好的输出电压波形,假设将电感反应式振荡电路中的电容换成电感,电感换成电容,并在转换后将两个电容的公共端接地,且增加集电极电阻Rc,就可得到电容反应式振荡电路,如右图所示。因为两个电容的三个端分别接在晶体管的三个极,故也称为电容三点式电路。

2.工作原理

★根据正弦波振荡电路的判断方法,观察如上图所示电路,包含了放大电路、选频网络、反应网络和非线性元件〔晶体管〕四个局部;

★放大电路能够正常工作;

★断开反应,加频率为f0的输入电压,给定其极性,判断出从C2上所获得的反应电压极性与输入电压一样,故电路弦波振荡的相位条件,各点瞬时极性如下图。

★只要电路参数选择得当,电路就可以满足幅值条件,而产生正弦波振荡。

3.振荡频率及起振条件

振荡频率

反应系数

起振条件

4.优缺点

电容反应式振荡电路的输出电压波形好,但假设用改变电容的方法来调节振荡频率,那么会影响电路的反应系数和起振条件;而假设用改变电感的方法来调节振荡频率,那么比拟困难。在振荡频率可调范围不大的情况下,可采用如右图所示电路作为选频网络。

5.稳定振荡频率的措施

假设要提高电容反应式振荡电路的频率,要减小C1、C2的电容量和L的电感量。实际上,当C1和C2减小到一定程度时,晶体管的极间电容和电路中的杂散电容将纳入C1和C2之中,从而影响振荡频率。这些电容等效为放大电路的输入电容Ci和输出电容Co,改良型电路和等效电器如下列图所示。由于极间电容受温度的影响,杂散电容又难于确定,为了稳定振荡频率,在电感支路串联一个小容量电容C3,而且C3C1,C3C2,这样

振荡频率

几乎与C1和C2无关,也与Ci和Co无关,所以频率稳定度高。

7.1.3LC正弦波振荡电路

LC正弦波振荡电路与RC桥式正弦波振荡电路的组成原那么在本质上是一样的,只是选频网络采用LC电路。在LC振荡电路中,当f=f0时,放大电路的放大倍数数值最大,而其余频率的信号均被衰减到零;引入正反应后,使反应电压作为放大电路的输入电压,以维持输出电压,从而形成正弦波振荡。由于LC正弦波振荡电路的振荡频率较高,所以放大电路多采用分立元件电路。

一、LC谐振回路的频率特性

LC正弦波振荡电路中的选频网络采用LC并联网络,如下图。图(a)为理想电路,无损耗,谐振频率为

〔推导过程〕

在信号频率较低时,电容的容抗()很大,网络呈感性;在信号频率较高时,电感的感抗()很大,网络呈容性;只有当f=f0时,网络才呈纯阻性,且阻抗最大。这时电路产生电流谐振,电容的电场能转换成磁场能,而电感的磁场能又转换成电场能,两种能量相互转换。

实际的LC并联网络总是有损耗的,各种损耗等效成电阻R,如图(b)所示。电路的导纳为

回路的品质因数

〔推导过程〕

上式说明,选频网络的损耗愈小,谐振频率一样时,电容容量愈小,电感数值愈大。

当f=f0时,电抗〔推导过程〕

当网络的输入电流为I0时,电容和电感的电流约为QIo。

根据式,可得适用于频率从零到无穷大时LC并联网络电抗的表达式Z=1/Y,其频率特性如下列图所示。Q值愈大,曲线愈陡,选频特性愈好。

假设以LC并联网络作为共射放大电路的集电极负载,如右图所示,那么电路的电压放大倍数

根据LC并联网络的频率特性,当f=f0时,电压放大倍数的数值最大,且无附加相移〔原因〕。对于其余频率的信号,电压放大倍数不但数值减小,而且有附加相移。电路具有选频特性,故称之为选频放大电路。假设在电路中引入正反应,并能用反应电压取代输入电压,那么电路就成为正弦波振荡电路。根据引入反

您可能关注的文档

文档评论(0)

姚启明 + 关注
实名认证
文档贡献者

80后

1亿VIP精品文档

相关文档