汽车高压连接器屏蔽端子结构设计.docxVIP

汽车高压连接器屏蔽端子结构设计.docx

  1. 1、本文档共7页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多

?

?

汽车高压连接器屏蔽端子结构设计

?

?

徐明

摘?要:本文采用了仿真模拟与理论计算的方式对屏蔽端子进行了应力分析,重新设计了屏蔽端子的结构,有效的解决了金属端子的屈服问题,有效改善了屏蔽端子的接触问题。

关键词:汽车高压连接器,屏蔽端子,设计结构,改善问题

1.引言

1.1连接器在震动测试过程中,屏蔽出现瞬断现象。

1.2连接器在公母端对配后(见图1),插座与插头的压铸件(铝合金)通过屏蔽环端子连接(见图2),此连接属于简支梁连接,在震动过程中,屏蔽端子出现屈服(见图3),使得端子不再与插座接触,造成屏蔽出现瞬断。

2.金属材料特性介绍

2.1应力应变曲线

见图4,金属材料在拉伸变形过程中,存在以下应力应变曲线。

从图4中我们可以看出材料的应变可以分为4个阶段

2.1.1弹性阶段?ob

σp为比例极限,σe为弹性极限

oa为直线,应力与应变在此阶段成正比关系,材料符合胡克定律。直线oa的斜率就是材料的弹性模量(有些也叫杨氏模量),直线部分的最高点所对应的应力值,记作σp,称为材料的比例极限。曲线超过a点,图上的ab段不再是直线,说明材料已不符合胡克定律。但在ab段内卸载,变形也随之消失,说明ab段也发生弹性变形,所以ab段称为弹性阶段。b点所对应的应力值记作σe,称为弹性极限。弹性极限与比例极限非常接近,工程实际中通常对二者不做严格区分,而近似地用比例极限代替弹性极限。

2.1.2屈服阶段?bc(失去抵抗变形的能力)

σs為屈服极限,力达到此线阶段叫做“屈服”

曲线超过b点后,出现一段锯齿形曲线,这一阶段应力没有增加,材料好像失去了抵抗变形的能力,把这种应力不增加而应变显著增加的现象称作屈服,bc段称为屈服阶段。屈服阶段曲线最低点对应的用力σs称为屈服点(或屈服极限)。在屈服点卸载,将出现不能消失的塑性变形。工作上一般不允许构件发生塑性变形,并把塑性变形作为塑性材料破坏的标志,所以屈服点σs是衡量材料强度的一个重要指标。

2.1.3强化阶段ce(恢复抵抗变形的能力,此阶段为均匀塑性变形)

σb为强度极限

经过屈服阶段后,曲线从c点又开始逐渐上升,说明要使应变增加,必须增加应力,材料又恢复了抵抗变形的能力,这种现象称作强化,ce称为强化阶段(加工硬化)。曲线最高点所对应的应力值记作σb,称为材料的抗拉强度(或强度极限)。σb是衡量材料强度的又一个重要指标。

2.1.4局部紧缩阶段ef

曲线到达e点前,材料的变形是均匀发生的,曲线到达e点,在材料比较薄弱的某一局部(材料不均匀或有缺陷处),变形显著增加,有效横截面急剧减小,出现了缩颈现象,材料很快被拉断,所以ef段称为缩颈断裂阶段。

3.应力计算及分析

3.1材料应力可以用普通公式计算,但是普通公式对处于弹性阶段的应力计算比较准确,而对于屈服阶段及往后的阶段不太准确,必须通过微积分进行计算,但如果高等数学没学好的或者没有高等数学基础的人来讲有点难度。不过普通计算公式可以为设计者指明改善的方向,在结合计算机辅助设计软件(CAE)进行分析验证。图5为普通计算公式。

4.屏蔽环应力分析

4.1屏蔽环材料属性

屏蔽环用的材料是普通磷青铜C5191R-H,材料的弹性模量110Gpa,屈服强度为557Mpa,抗拉强度590~685Mpa,泊松比为0.33

3.2应力分析结果

图6模拟屏蔽环弹片下压0.50mm,CAE软件分析得出材料的最大应力为661.3Mpa。已经大于材料的屈服强度557Mpa,因此会出现永久塑性变形。图7为端子的位移力量曲线,可知端子在0点下压0.50mm时,可返回至离原点0.34mm,屈服率68%(0.34/0.50)。

5.改善对策

5.1根据应力公式,通过加长力臂L及增大材料的屈服强度,使得端子在最大变形时的应力小于材料的屈服强度,这样可降低端子的屈服,来改善屏蔽瞬断情况。

增大材料的屈服强度:现将材料由磷青铜C5191R-H改为铍青铜C17200-TM06,材料的弹性模量110Gpa,屈服强度为1035Mpa,1060Mpa,泊松比为0.33.

增加力臂:端子由简支梁改为悬臂梁,同时适当再增加力臂,见图8

5.2改后应力分析

改后结构分别分析下压0.50mm(正常工作),0.60mm(过压0.10mm),下压0.70mm(过压0.20mm)三种情况,用来评估改善后的结构是否可靠。

图9为端子下压0.50mm时的应力云图,我们可以看到材料的最大应力为612.1Mpa,小于屈服强度1035Mpa,所以在最大变形情况下处于弹性阶段,不会屈服,结构可靠。

图10为下压0.50mm时的位移力量曲线,图11为下压0.60mm是的位移力量曲线,图12为下压0,70mm时的力量位移曲线。我们看到在下压0.5mm时,端子无屈服。下压0.60mm是,端子

文档评论(0)

131****8213 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档