数据挖掘在进口报关流程优化中的应用研究.docx

数据挖掘在进口报关流程优化中的应用研究.docx

  1. 1、本文档共20页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

?

?

数据挖掘在进口报关流程优化中的应用研究

?

?

摘要随着大数据时代的到来,企业信息处理流程的优化,变得至关重要。很多企业在分析信息处理流程的方法上还是相当简单,采用类似于分析实物制造流程的方法。但是在实际的推行过程中,由于缺乏对信息流程处理的多样性和变动性的特点了解,只是凭简单分析和个人经验抓问题发生点,所以出现抓不住重点和看不全面的两大问题。本文利用数据挖掘的方法,对N公司的进口报关流程进行了分析和改善,通过建立价值流程图,找出最有改善价值的流程段,然后运用决策树模型,针对若干流程薄弱点提出具体建议。

【关键词】进口报关时间优化数据挖掘

1引言

信息虽给出了数据中一些有一定意义的东西,但它往往和人们所从事的任务没有什么关联,还不能作为判断、决策和行动的依据。对信息进行再加工,进行深入洞察,才能获得更有用的信息,即知识。从数据到知识,要经过分析加工、处理精炼的过程。我们可以把知识从低到高区分为四个等级:数据、信息、知识与智慧。数据是原始素材;信息是可以对比且具有相关背景资料的数据;知识是可用于指导行动的信息;智慧是为达到特定目标而运用知识的能力。

数据挖掘,又称数据库知识发现,是数据库技术的进一步扩展,所谓的数据挖掘是非琐碎的过程,揭示了隐含的、未知的从数据库中大量数据和信息的潜在价值,使得人们收集数据的能力大大提高。数据挖掘是一种决策支持过程,它是基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术、高度自动化企业数据分析,归纳推理,发掘出潜在的模式,帮助决策者调整市场策略,减少风险,做出正确的决策。

2N公司进口报关流程的状况

2.1进口报关的方式

进口报关应该分为一般贸易进口和进料加工企业这两个方法。

2.2进行报关的程序

在正常情况下,进口报关分为4个步骤,:声明、查检、纳税和释放。

2.3流程结构图

如图1。

3利用数据挖掘处理问题的整体策略

3.1制作价值流程图

3.1.1描述个人职能

进口报关流程不同于传统的制造业,是个信息处理的过程,每个人的职能比制造业更加复杂,明确每个人的职能,才能知道价值流程图的每个子流程。每个企业的进口报关有着自己的特性,所以在分析前,必须重新梳理他们的职能。每个人的职能描述可以分以下5个方面:

(1)来源:他的前道是谁,他们分别会提交过来什么任务,是信息还是实物。

(2)处理规则:对于每个任务,处理的规则是什么。

(3)任务目标:每个任务最终会达到什么效果。

(4)等待机制:不同于实物制造流水线工人的职能单一,进口报关流程中的每个人往往有其他无关的任务,所以清楚任务所面临的可能等待,是清楚某些任务出现不正常的延迟的必要事件。

(5)错误处理:因为类似的信息处理任务的非标准特质,所以出错率较高,错误处理机制的好坏往往决定着任务处理时间分布。

(6)去处:成功处理的任务的下个处理程序。

3.1.2分析进口报关的信息处理流程

以N公司的进口报关流程的基本情况为例:

(1)从国外制造商和物流服务商那获取报关需要的原始凭证:合同,发票,运输单据,箱单。

(2)子流程:海运过程,报关文档的预处理,电子申报,海关审核报关单据,现场检查。

(3)涉及的合作方:国外制造商,物流服务提供商,N公司进口部门,报关商,海关。

(4)涉及人员:总共约20人,其中专职本任务的约10人。

(5)考核指标:总的流程时间,N公司目前的设定标准天数为7天。

3.1.3画出价值流程图

价值流程图(ValueStreamMapping,VSM)是丰田精益制造(LeanManufacturing)生产系统框架下的一种用来描述物流和信息流的形象化工具。VSM可以作为管理人员、工程师、生产制造人员、流程规划人员、供应商以及顾客发现浪费、寻找浪费根源的起点。

它在这的主要作用:

(1)帮助数据分析人员去理解流程,理解企业的业务数据背后的逻辑,从而建立数据挖掘的具体模型,运用恰当的分析模型。

(2)当数据分析结果出来时,便于把它翻译为具体的问题,这样提出的改善项目,业务人员才能理解这些项目的意义,才能争取到更多的资源支持。

3.2数据分析

3.2.1数据的前期工作

(1)挑选数据。把N公司进口报关的数据记录整合,结合对进口报关流程的理解,剔除与流程时间无关的记录要素。

(2)数据的预处理。删除异常和无效的数据,把所有的数据转换为标准格式。

(3)数据的转换。将把数据转换成一个模型,这个分析模型是针对挖掘算法建立的,一个恰当的挖掘算法分析模型是数据挖掘成功的关键。

3.2.2列出可能的影响因素

对整个流程进行分析,根据第一步的个人职能描述,从和他们的交流中提炼可能的影响因素,并且区分哪些是难以改变的,哪些是精益改善的重点,对于N公司的进口报关流程,如表1所示。

在后面的数据

文档评论(0)

152****7564 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档