人工智能安全治理框架-中文版+英文版.docx

人工智能安全治理框架-中文版+英文版.docx

  1. 1、本文档共91页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

目录

1.人工智能安全治理原则 1

2.人工智能安全治理框架构成 2

3.人工智能安全风险分类 3

3.1人工智能内生安全风险 3

3.2人工智能应用安全风险 5

4.技术应对措施 7

4.1针对人工智能内生安全风险 7

4.2针对人工智能应用安全风险 9

5.综合治理措施 10

6.人工智能安全开发应用指引 12

6.1模型算法研发者安全开发指引 12

6.2人工智能服务提供者安全指引 13

6.3重点领域使用者安全应用指引 14

6.4社会公众安全应用指引 15

-1-

人工智能安全治理框架

人工智能安全治理框架

(V1.0)

人工智能是人类发展新领域,给世界带来巨大机遇,也带来各类风险挑战。落实《全球人工智能治理倡议》,遵循“以人为本、智能向善”的发展方向,为推动政府、国际组织、企业、科研院所、民间机构和社会公众等各方,就人工智能安全治理达成共识、协调一致,有效防范化解人工智能安全风险,制定本框架。

1.人工智能安全治理原则

秉持共同、综合、合作、可持续的安全观,坚持发展和安全并重,以促进人工智能创新发展为第一要务,以有效防范化解人工智能安全风险为出发点和落脚点,构建各方共同参与、技管结合、分工协作的治理机制,压实相关主体安全责任,打造全过程全要素治理链条,培育安全、可靠、公平、透明的人工智能技术研发和应用生态,推动人工智能健康发展和规范应用,切实维护国家主权、安全和发展利益,保障公民、法人和其他组织的合法权益,确保人工智能技术造福于人类。

1.1包容审慎、确保安全。鼓励发展创新,对人工智能研发及应用采取包容态度。严守安全底线,对危害国家安全、社会公共利益、公众合法权益的风险及时采取措施。

-2-

人工智能安全治理框架

1.2风险导向、敏捷治理。密切跟踪人工智能研发及应用趋势,从人工智能技术自身、人工智能应用两方面分析梳理安全风险,提出针对性防范应对措施。关注安全风险发展变化,快速动态精准调整治理措施,持续优化治理机制和方式,对确需政府监管事项及时予以响应。

1.3技管结合、协同应对。面向人工智能研发应用全过程,综合运用技术、管理相结合的安全治理措施,防范应对不同类型安全风险。围绕人工智能研发应用生态链,明确模型算法研发者、服务提供者、使用者等相关主体的安全责任,有机发挥政府监管、行业自律、社会监督等治理机制作用。

1.4开放合作、共治共享。在全球范围推动人工智能安全治理国际合作,共享最佳实践,提倡建立开放性平台,通过跨学科、跨领域、跨地区、跨国界的对话和合作,推动形成具有广泛共识的全球人工智能治理体系。

2.人工智能安全治理框架构成

基于风险管理理念,本框架针对不同类型的人工智能安全风险,从技术、管理两方面提出防范应对措施。同时,目前人工智能研发应用仍在快速发展,安全风险的表现形式、影响程度、认识感知亦随之变化,防范应对措施也将相应动态调整更新,需要各方共同对治理框架持续优化完善。

2.1安全风险方面。通过分析人工智能技术特性,以及在不同行业领域应用场景,梳理人工智能技术本身,及其在应用过程中面临的各种安全风险隐患。

2.2技术应对措施方面。针对模型算法、训练数据、算力设施、产品服务、应用场景,提出通过安全软件开发、数据质量提升、安全建设运维、测评监测加固等技术手段提升人工智能产品及应用的安全性、公平性、可靠性、鲁棒性

-3-

人工智能安全治理框架

的措施。

2.3综合治理措施方面。明确技术研发机构、服务提供者、用户、政府部门、行业协会、社会组织等各方发现、防范、应对人工智能安全风险的措施手段,推动各方协同共治。

2.4安全开发应用指引方面。明确模型算法研发者、服务提供者、重点领域用户和社会公众用户,开发应用人工智能技术的若干安全指导规范。

3.人工智能安全风险分类

人工智能系统设计、研发、训练、测试、部署、使用、维护等生命周期各环节都面临安全风险,既面临自身技术缺陷、不足带来的风险,也面临不当使用、滥用甚至恶意利用带来的安全风险。

3.1人工智能内生安全风险

3.1.1模型算法安全风险

(a)可解释性差的风险。以深度学习为代表的人工智能算法内部运行逻辑复杂,推理过程属黑灰盒模式,可能导致输出结果难以预测和确切归因,如有异常难以快速修正和溯源追责。

(b)偏见、歧视风险。算法设计及训练过程中,个人偏见被有意、无意引入

文档评论(0)

使者使者 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档