高速电机转子冲片的强度设计(六)——极限失效扭矩及最大压装力计算方法(中).docxVIP

高速电机转子冲片的强度设计(六)——极限失效扭矩及最大压装力计算方法(中).docx

  1. 1、本文档共14页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多

3极限松脱扭矩及影响因素仿真计算方法

本节主要技能点:1、采用有限元方法,计算硅钢片极限松脱扭矩的计算方法与结果评价指标。2、网格划分策略与有限元分析计算成本权衡。

考虑到仿真与手算的差异及对照验证复杂度,本文的仿真部分,并未参考上文计算结果。

首先重点计算松脱扭矩及各种影响计算精度参数的对比验证案例,而后简单介绍轴向压装力的分析方法。分析模块采用静力学分析,因实际加载一般十分平稳,无需考虑惯性与时间关系。

下图为完成的各种仿真案例。其包括对10mm轴向尺寸转轴与硅钢片模型,加载从0N·m~100N·m的线性渐变扭矩,计算临界失效扭矩的方法。为验证不同参数,对松脱扭矩的影响关系,还进行了不同摩擦系数、网格尺寸、转速、过盈量等的对比计算,共计29次重复计算。耗时约一星期。

图-7?本文的计算案例

按照原计划,本文还希望进行,不同温度影响的对比计算,但考虑到笔者1000G固态硬盘即将用罄,该计划搁浅。完成全部案例时,本文用仿真文件,共计占用919G空间。

图-8?仿真结果文件容量

本文采用的几何模型与之前的案例略有不同。其不再使用1mm轴向长度,而是使用SCDM模块,将模型总体轴向延伸增加到10mm。从而更好的对比过盈配合接触状态,沿电机轴向长度的分布关系。其缺点为计算量,将几乎等比例增加9倍。这就是为什么仅29个Case,即耗尽919G硬盘容量的主要原因。

图-9?仿真用几何模型

为节约计算量,本案例采用ANSYSWorkbench默认的“结构钢”材料。并仅考虑线弹性材料属性及小变形条件。

图-10?材料属性设置

过盈配合设置。本文与之前案例类似,对转轴与硅钢片间设置一组摩擦接触。并设置偏置,从而表达过盈量效应。

图-11?过盈配合设置

与之前案例不同的是,本案例为减少磁钢及外圈隔磁桥,在扭矩载荷作用下的变形,将磁钢四周与硅钢片四周内壁,均使用绑定接触进行连接。其连接刚度将大于实际产品。

网格划分情况。采用转轴与硅钢片设置体网格,并在过盈配合两面,分别设置局部3级单元细化的方式,划分本案例网格。当后续对比不同网格尺寸影响时,仅调整转轴及硅钢片的体网格尺寸。同步的,其过盈配合表面网格尺寸,也随着总体网格尺寸以及3级细化设置的存在,而等比例缩小。

图-12?网格划分情况

载荷与边界条件设置。对转轴内孔设置固定位移约束。对硅钢片外径设置扭矩载荷。

图-13?载荷与边界条件设置

下图为扭矩载荷的设置方法。其在分析设置中,采用2个载荷步,并设置扭矩载荷。同时,扭矩载荷设置右下角的表格中,对第一个载荷步关闭其加载,从而将第一个载荷步,用于过盈配合效应的实现。当其收敛后,在第二个载荷步,设置从0N·m~100N·m线性增加扭矩载荷。

下面其他案例与载荷设置方法类似。从而实现对不同载荷步时,加载或生效或禁止某些载荷的生成与禁止作用。该功能非常适合,多工况先后加载对比。需要注意的是,本案例采用线性静力学计算方法,其载荷影响不随着载荷步及载荷加载顺序的影响,即无论之前载荷如何设置,后续载荷步的结果,均不被前一步或前几步的影响。

如果采用非线性静力学材料属性,比如本系列前文的极限转速案例中,介绍的真实应力-应变曲线,而且载荷足够增大至,进入屈服状态或者考虑时间因素的瞬态动力学等。

图-14?扭矩载荷设置

网格设置方法。前文介绍过,本文将验证不同网格尺寸,对极限松脱扭矩的影响。主要为调整下文单元尺寸中,0.6mm数值。

为尽量包含足够广阔的网格尺寸范围,本文将对0.6mm~2.2mm之间,近四倍的尺寸差异进行对比计算。

一般而言,对于任何需要进行网格划分或其他离散化操作的数值模拟计算技术,都需要验证离散误差,对结果的影响。同时,必须考虑计算量、计算时间、设置难度、调试难度等成本因素,从而综合选取最适合的策略。必要时,可采用分级计算策略。如当deadline限制,必须3天内完成计算时,则坚决不考虑任何,一个月才能完成的计算策略等。

对于在校生而言,一个仿真案例,往往以月甚至半年为行动期限;就企业而言,一般以星期、天、甚至小时为单位。故其行动策略完全不同。

一般对于有限元方法,随着不同网格尺寸与密度的变化,其关键结果将出现一条曲线状变化趋势。每相邻计算结果之间,从较为粗糙网格的差异较大,逐渐接近并趋于平缓。即实现结果的网格无关性。

建议首先对较为粗大的网格进行试算,并下一次对关键位置,如应力集中点附近或过盈配合面附近,采用70%左右网格尺寸再次计算,而后采用70%的70%即原始50%网格尺寸再次计算。重复以上5次或更多,直至出现结果区域平缓的过程。

笔者作为企业内的强度性能开发工程师,主要追求效率优先的基本策略。六面体网格因其综合成本过于遥不可及,技术上不建议选用。而四面体则无论生成网格的难度,还是计算成本均十分友好。但碍于众所周知的因非技术角度因素,

文档评论(0)

stereo + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档