人工智能安全治理框架1.0版 2024.docx

  1. 1、本文档共34页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

目录

1.人工智能安全治理原则 1

2.人工智能安全治理框架构成 2

3.人工智能安全风险分类 3

3.1人工智能内生安全风险 3

3.2人工智能应用安全风险 5

4.技术应对措施 7

4.1针对人工智能内生安全风险 7

4.2针对人工智能应用安全风险 9

5.综合治理措施 10

6.人工智能安全开发应用指引 12

6.1模型算法研发者安全开发指引 12

6.2人工智能服务提供者安全指引 13

6.3重点领域使用者安全应用指引 14

6.4社会公众安全应用指引 15

-1-

人工智能安全治理框架

人工智能安全治理框架

(V1.0)

人工智能是人类发展新领域,给世界带来巨大机遇,也带来各类风险挑战。落实《全球人工智能治理倡议》,遵循“以人为本、智能向善”的发展方向,为推动政府、国际组织、企业、科研院所、民间机构和社会公众等各方,就人工智能安全治理达成共识、协调一致,有效防范化解人工智能安全风险,制定本框架。

1.人工智能安全治理原则

秉持共同、综合、合作、可持续的安全观,坚持发展和安全并重,以促进人工智能创新发展为第一要务,以有效防范化解人工智能安全风险为出发点和落脚点,构建各方共同参与、技管结合、分工协作的治理机制,压实相关主体安全责任,打造全过程全要素治理链条,培育安全、可靠、公平、透明的人工智能技术研发和应用生态,推动人工智能健康发展和规范应用,切实维护国家主权、安全和发展利益,保障公民、法人和其他组织的合法权益,确保人工智能技术造福于人类。

1.1包容审慎、确保安全。鼓励发展创新,对人工智能研发及应用采取包容态度。严守安全底线,对危害国家安全、社会公共利益、公众合法权益的风险及时采取措施。

-3-

人工智能安全治理框架

的措施。

2.3综合治理措施方面。明确技术研发机构、服务提供者、用户、政府部门、行业协会、社会组织等各方发现、防范、应对人工智能安全风险的措施手段,推动各方协同共治。

2.4安全开发应用指引方面。明确模型算法研发者、服务提供者、重点领域用户和社会公众用户,开发应用人工智能技术的若干安全指导规范。

3.人工智能安全风险分类

人工智能系统设计、研发、训练、测试、部署、使用、维护等生命周期各环节都面临安全风险,既面临自身技术缺陷、不足带来的风险,也面临不当使用、滥用甚至恶意利用带来的安全风险。

3.1人工智能内生安全风险

3.1.1模型算法安全风险

(a)可解释性差的风险。以深度学习为代表的人工智能算法内部运行逻辑复杂,推理过程属黑灰盒模式,可能导致输出结果难以预测和确切归因,如有异常难以快速修正和溯源追责。

(b)偏见、歧视风险。算法设计及训练过程中,个人偏见被有意、无意引入,或者因训练数据集质量问题,导致算法设计目的、输出结果存在偏见或歧视,甚至输出存在民族、宗教、国别、地域等歧视性内容。

(c)鲁棒性弱风险。由于深度神经网络存在非线性、大规模等特点,人工智能易受复杂多变运行环境或恶意干扰、诱导的影响,可能带来性能下降、决策错误等诸多问题。

-4-

人工智能安全治理框架

(d)被窃取、篡改的风险。参数、结构、功能等算法核心信息,面临被逆向攻击窃取、修改,甚至嵌入后门的风险,可导致知识产权被侵犯、商业机密泄露,推理过程不可信、决策输出错误,甚至运行故障。

(e)输出不可靠风险。生成式人工智能可能产生“幻觉”,即生成看似合理,实则不符常理的内容,造成知识偏见与误导。

(f)对抗攻击风险。攻击者通过创建精心设计的对抗样本数据,隐蔽地误导、影响,以至操纵人工智能模型,使其产生错误的输出,甚至造成运行瘫痪。

3.1.2数据安全风险

(a)违规收集使用数据风险。人工智能训练数据的获取,以及提供服务与用户交互过程中,存在未经同意收集、不当使用数据和个人信息的安全风险。

(b)训练数据含不当内容、被“投毒”风险。训练数据中含有虚假、偏见、侵犯知识产权等违法有害信息,或者来源缺乏多样性,导致输出违法的、不良的、偏激的等有害信息内容。训练数据还面临攻击者篡改、注入错误、误导数据的“投毒”风险,“污染”模型的概率分布,进而造成准确性、可信度下降。

(c)训练数据标注不规范风险。训练数据标注过程中,存在因标注规则不完备、标注人员能力不够、标注错误等问题,不仅会影响模型算法准确度、可靠性、有效性,还可能导致训练偏差、偏见歧视放大、泛化能力不足或输出错误

您可能关注的文档

文档评论(0)

4A方案 + 关注
实名认证
服务提供商

擅长策划,|商业地产|住房地产|暖场活动|美陈|圈层活动|嘉年华|市集|生活节|文化节|团建拓展|客户答谢会

1亿VIP精品文档

相关文档