纳米颗粒在电化学生物传感器中的应用研究.docxVIP

纳米颗粒在电化学生物传感器中的应用研究.docx

  1. 1、本文档共5页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多

?

?

纳米颗粒在电化学生物传感器中的应用研究

?

?

摘要:纳米技术介入生物传感器的研究领域具有非常重要的意义。简要介绍了电化学生物传感器的工作原理,着重讨论了纳米颗粒在电化学生物传感器中的研究进展,并论述了这一领域的发展趋势。

关键词:纳米颗粒;电化学生物传感器;酶电极

1引言

生物传感器是用固定化的生物活性成分为敏感元件与适当的能量转换器件结合而成的传感装置,用以测定一种或几种分析物的含量。生物传感器是多学科交叉的产物,是一种全新的检测技术,在生命科学、临床诊断、环境监控以及过程控制等各种领域都有所应用。生物传感器与传统的检测手段相比,具有高专一性和灵敏度,响应时间快的明显优势,但对于实现在线、实时检测的要求仍有一定差距。

纳米技术主要是针对尺度为1~100nm之间的分子世界的一门技术,是21世纪最前沿的两大学科之一。纳米颗粒处在宏观体系和微观体系之间的过渡区域,是由数目极少的原子或分子组成的原子群。纳米颗粒的特殊结构使其具有微尺寸效应、表面效应、量子效应和宏观量子隧道效应,并由此引起力学、电学、磁学、热学、光学和化学活性等方面的特殊性质。它具有比表面积大、表面活性中心多、催化效率高、吸附能力强、表面活性高等优点而被用于电化学生物传感器的研究,以提高灵敏度和缩短反应时间。

2电化学生物传感器

电化学生物传感器是以酶、微生物、抗原或抗体、细胞、动植物组织为敏感膜,以将生物量转换为电信号的电化学电极为转换器组成的装置。根据其产生电信号的类别,可分为电流型和电位型两大类。目前研究较多的是各种酶电极。

酶电极就是利用酶对生化反应催化的单一性目标物质进行检测。在绝大多数情况下,生物酶会保持极大的选择性。通常在生物酶的催化下发生如下的生化反应:

式中,S1为目标物,S2为媒介物,P1为生成物1,P2为生成物2。当目标物S1的浓度不能被直接检测时,可以通过检测媒介物S2的减少量(或P1、P2的生成量或生成速度)来获得目标物的浓度。

3研究现状

3.1纳米颗粒用作抗干扰剂

长期以来,减小共存电活性物质,特别是抗坏血酸(AA)的干扰是葡萄糖生物传感器研究的重点。最近,研究人员将MnO2纳米颗粒溶于壳聚糖溶液中,电沉积在葡萄糖氧化酶(GOD)修饰的电极表面,形成一层氧化物薄膜。这样制得的生物传感器可以很好地消除AA的干扰,而对葡萄糖的测定没有影响。

3.2纳米颗粒标记

许多文献报道了胶体金在各种生物传感器中的信号放大作用。首先把生物素化的白蛋白吸附在电极表面,再与10nm直径胶体金标记的亲和素反应,由胶体金引起的电流响应与亲和素浓度在一定范围内线性相关。纳米颗粒也可以用来定位肿瘤,荧光素标记的识别因子,与肿瘤受体结合,可以在体外用仪器显影确定肿瘤的大小和位置。另一个重要的方法是用纳米磁性颗粒标记识别因子,与肿瘤表面的靶标识别器结合后,在体外测定磁性颗粒在体内的分布和位置,从而给肿瘤定位。

3.3纳米颗粒用作固定载体

在生物传感器的研制中,人们尝试用多种新方法来固定酶,以期达到实用的要求。纳米颗粒比表面积大、吸附能力强,可以很牢固地吸附酶等生物大分子,增加酶的吸附量和稳定性,且蛋白质等物质吸附在纳米金属颗粒的表面上仍能保持生物活性。

(1)纳米颗粒在GOD电极中的应用。

用超细颗粒固定化酶是传感器研制中最有前途的方法。早期的研究主要集中于单一纳米颗粒,后来发展为将复合纳米颗粒应用于GOD和其它酶电极中。

①复合纳米颗粒的应用。

任湘菱用憎水银-金纳米颗粒进行GOD的固定化研究表明:憎水银-金纳米颗粒可以显著提高GOD酶电极的响应灵敏度。这主要是由于:(1)金属纳米颗粒本身就具有催化活性:当金属原子簇所包含的原子数少到一定数目时,颗粒本身具有从周围体系中吸取电子而被还原的特性。因而在GOD酶反应中纳米颗粒迅速地从被还原的GOD(FADH2)获取电子而使GOD重新具有氧化性,这样就加速了酶的再生速度;(2)纳米颗粒表现出显著的不同于块体材料的特性,其非常大的表面积和较高的表面自由能使得大量GOD牢固吸附在纳米颗粒表面,在一定程度上钝化了酶的构型,使其不易发生进一步的变化而失活,增加了酶的稳定性和催化活性。

将纳米憎水Si02和亲水Au组成的复合纳米颗粒固载GOD构建的传感器,可以保持GOD的活性和延长酶电极的寿命,其效果明显优于这两种纳米颗粒单独使用时对GOD电极响应性能的增强作用。主要原因是复合纳米颗粒比单一纳米颗粒更易于形成连续势场,降低电子在电极和固定化酶之间的迁移阻力,提高电子迁移率,有效地加速了酶的再生过程,所以

文档评论(0)

186****6075 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档