数据仓库技术及在人力资源系统的设计.docx

数据仓库技术及在人力资源系统的设计.docx

  1. 1、本文档共10页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

?

?

数据仓库技术及在人力资源系统的设计

?

?

摘要:数据仓库是当前信息领域的热门方向。本文阐述了数据仓库、联机分析处理、数据挖掘的概念,并对OLAP和数据挖掘技术进行了探讨;并在此基础上,提出了数据仓库技术在人力资源系统的设计方案。

论文关键词:数据仓库,数据挖掘,联机分析处理,人力资源系统

1数据仓库概念及其体系结构

数据仓库(DataWarehouse)是一个面向主题的(SubjectOriented)、集成的(Integrated)、相对稳定的(Non–Volatile)、反映历史变化(TimeVariant)的数据集合,用于支持管理决策。与其他数据库应用相比,数据仓库更像一种过程,即对分散的业务数据进行整合、加工和分析的过程,而不是一种可以购买的产品。

数据仓库包括如下几个部分,如图1所示。

(1)原数据部分,数据提取、清洗、转换和装载(ETL)部分,以及中心数据仓库部分。经过这些环节,可以完成将数据从源数据装载到数据仓库中的过程。

(2)数据集市。根据部门的需要,可以从数据仓库中形成数据集市,以满足部门及数据分析的需要。

图1数据仓库的体系结构

(3)数据访问和分析部分。在数据访问和分析的过程中,可以采用OLAP分析及数据挖掘技术进行分析,得出有关的分析结果。

2数据分析技术

数据分析技术是建立在一定数据基础上,进行分析的方式和方法,通常包括:OLAP、数据挖掘、统计分析、联机挖掘等技术。需要说明的是,数据分析技术并不一定需要建立在数据仓库的基础上,但有了数据仓库之后,数据分析的效率和能力将大大提高。通过与数据分析技术的结合,才能发现许多前所未有的分析结果,并为管理者提供科学的决策依据。

2.1OLAP(联机分析处理)

OLAP分析与数据仓库的关系非常紧密。数据仓库的建立,解决了依据主题进行数据存储的问题,提高了数据的存取速度,而OLAP分析构成了数据仓库的表现层,将数据仓库中的数据通过不同的维和指标,灵活的展现出来,提高数据的展现能力,进而提高数据的分析能力。

OLAP涉及以下术语:维度(Dimension)、量度(Measure)、级别(Level)、成员(Member)、多维数据集/立方体(Cube)、时间粒度(Timegranularity)、星型结构/维度(Starschema)、雪花型结构/维度(Snowflakeschema)。

OLAP对不同维度进行肉眼观察,并非运用更科学的概率论或其它数学工具去测度;而肉眼观察带有主观的“有色眼镜”,故缺乏科学客观的评判手段和方法。其次,当遇到维度过多、数据量过大的实际情况时,OLAP工作效率急剧下降。再次,若自变量和自变量之间存在的线性关系或交互作用,OLAP无法分辨“混杂因子”或找出主要影响因素。因此,OLAP无法完全满足在分析信息系统中最基本、最重要和最关键的要求:面对主题(商务需求)进行分析;而在实际信息处理中,OLAP无法实现分析的主题或任务,则需要数据分析或数据挖掘更强大的分析工具、技术来实现。计算机论文

2.2数据挖掘

数据挖掘亦称为数据开采,它首先由W.J.Frawley、G.Piatesky-Shapiro等人提出。数据挖掘是一种数据分析工具,它从大量的、不完全的、有噪声的、模糊的、随机的数据中提取人们感兴趣的数据模式、数据的普遍关系及其隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识,提取的知识表示为概念(Concepts)、规则(Rules)、规律(Regularities)、模式(Patterns)等形式,其目的是帮助管理者寻找数据间潜在的关联,发现被忽略的要素,而这些信息对预测趋势和决策行为将起到一定的支持作用。

数据库中的数据挖掘是一个多步骤的处理过程,这些步骤有:

(1)数据定义阶段。主要了解相关领域的有关情况,熟悉背景知识,弄清楚用户决策分析对信息的要求。

(2)数据提取阶段。根据要求从数据库中提取相关的数据。

(3)数据预处理阶段。主要对前一阶段产生的数据进行再加工,检查数据的完整性及数据的一致性,对其中的噪音数据进行处理,对缺损的数据进行填补。

(4)数据挖掘阶段。主要是运用选定的知识发现算法,从数据中提取出用户所需要的知识,这些知识可以用一种特定的方式表示或使用一些常用的表示方式。

(5)知识评估阶段。将发现的知识以用户能了解的方式呈现,根据需要对知识发现过程中的某些处理阶段进行优化,直到满足要求。

2.3数据仓库、0LAP和数据挖掘之间的关系

在数据仓库化的决策支持系统中,应将数据仓库、OLAP、数据挖掘进行有机结合,其所担当的角色分别为:

(1)数据仓库用于数据的存储和组织,它从事务处理系统中抽取数据,并对其进行综合、集成与转换,提供面向全局的数据视图;OLAP致力于数据的分析

文档评论(0)

135****0879 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档