品牌优先的零售客户细分研究.docx

  1. 1、本文档共5页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

?

?

品牌优先的零售客户细分研究

?

?

刘坤达宋红文张卫东欧达宇

摘要:客户关系管理的关键是客户分类,而烟草工业的优势在品牌。为了品牌发展和品牌培育,突出品牌特征,对客户细分,实现精准营销,提高工业企业品牌核心竞争力。采用品牌占比和品牌订购数作为聚类因子,获得20个零售客户细分群组,并提出将客户价值作为每个群组的价值依据。结合海量数据获取优质客户群组及潜力客户群组信息,构成优质零售客户画像。最后针对符合优质客户画像的1281位零售客户,工商协同实现精准投放,工业企业进行精准营销。以真龙品牌为例,在某市进行为期一年的销售实例验证,实证证明在该策略下,品牌销量和订足率都得到了提升。

关键词:聚类分析;品牌占比;零售客户;客户价值

:F27????:A?????doi:10.19311/j.cnki.1672-3198.2021.32.022

1背景

信息时代的来临,企业营销焦点从“产品中心”转变为“客户中心”,客户关系管理成为企业的核心问题。客户关系管理的关键问题是客户分类,通过客户分类,区分高价值的客户、低价值的客户,企业针对不同价值的客户指定优化的个性化服务方案,采取不同的营销策略,将有限的营销资源集中于高价值客户,实现企业利润最大化目标。

烟草工业的优势在品牌,为了品牌发展和品牌培育,工业公司客户经理当前的主要做法是,依靠“单条值”和“订购总数”作为客户细分指标,实现零售客户的分档,对档位高价值客户进行重点营销推广活动。通过实际统计分析发现,由于客户所处商圈、经营业态等因素影响,基于“单条值”和“订购总数”优选的高价值客户,对于具体的品牌而言并无直接关联。本文将采用突出品牌特点的聚类因子,完成对零售客户聚类分析,帮助工业公司客户经理找到与品牌相关的优质零售客户,从而实现品牌的发展与销售的提升。

2国内外研究现状

2.1客户细分

美国市场学家温德尔·史密斯于1956年提出“细分”概念,客户细分能够有效降低成本,营销策略是基于建立的客户价值细分模型。谢佳从应用需求出发,构建客户细分框架,并运用聚类分析、决策树、逻辑回归等数据挖掘方法对客户进行细分建模,为电力客户营销服务策略的制定提供依据。李艳君通过对八种不同聚类方法的对比研究,对辽宁省某商业银行的CRM结算系统客户细分,得到了五种分类,该细分模型表明银行80%的收益是由20%比较重要的客户带来的,数据支撑精准营销策略。

王吉斌等人对零售客户细分,提升货源投放精准度和订足率。叶晓蕾根据终端零售客户购买频率,对零售客户分类,用于优化营销流程、优化专卖管理、优化物流配送。王鹏主要通过价值评价指标,对零售客户价值评价统计分析、聚类分析,在此基础上建立客户群分类模型,并提出零售客户的产品、价格、渠道、促销策略。何杰设计卷烟消费者调查问卷,在福建省宁德市调查取样,根据分析结论将卷烟消费者划分为三类细分市场,提出重新定位七匹狼卷烟产品的建议。彭江等人从卷烟供求模式入手,基于商品价位进行细分,解析各环节存在的矛盾和问题,揭示了卷烟市场供给需求的变化机制,并提出应对营销策略。

2.2用户画像

用户画像是从海量数据中获取的并由用户信息构成的形象集合。用户特征信息包括与用户有关的稳定因素(例如个人基本信息)和可变因素两部分。单晓红等人构建基于在线评论的用户画像本体模型,展示用户对于酒店相关属性的偏好,为酒店进行精准营销提供了很大的帮助。李恒超通过使用卷积神经网络模型和浅层神经网络模型来分别提取查询词之间语义关联,构建了用户画像的二级融合模型的算法框架。齐会敏等人运用用户画像实现了一种基于用户兴趣主题的个性化好友推荐方法。

3零售客户价值研究

3.1零售客户聚类分析

3.1.1数据来源

数据来源于内部销售系统,按零售客户汇总的订单数和订购金额,共计样本数据13519个;全年活跃零售客户基本信息13511个;两种数据按照“零售客户编号”属性进行合并,可得到包含客户详细信息及其订单信息的样本13511个。

3.1.2聚类因子选取

为了突出聚类后的品牌特征,首先提出了“品牌占比”作为第一个聚类因子,主要思路是通过“品牌订购数”占其“所有商品总订购数”的比例来量化该客户对品牌的倾向程度,“品牌订购数”作为第二个聚类因子,表示零售客户对品牌的绝对贡献。经营规模大、购买力强的客户相对更为优质。所以将总订购数,总订购金额分别作为第3和第4的聚类因子。

3.1.3聚类结果

K-Means聚类算法广泛用于电力、电信、烟草的客户细分。选取的两个聚类因子有量级的差异,需要首先进行标准化处理,再经过多轮聚类,采用轮廓系数优化,最优的聚类结果是划分为20个群组,最终的聚类结果如图1所示。

3.2客户价值

由于零售客户是按计划每周一次订购商品,不能采用RFM模型。因此我们引入“客户价值

您可能关注的文档

文档评论(0)

134****4822 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档