详细IGBT的开通过程(IGBT结构及工作原理).doc

详细IGBT的开通过程(IGBT结构及工作原理).doc

  1. 1、本文档共7页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

详细IGBT的开通过程(IGBT结构及工作原理)

IGBT开通过程的分析

IGBT作为具有开关速度快,导通损耗低的电压控制型开关器件被广泛应用于高压大容量变频器和直流输电等领域。现在IGBT的使用比较关注的是较低的导通压降以及低的开关损耗。作为开关器件,研究它的开通和关断过程当然是必不可少的,今天我们就来说说IGBT的开通过程。

一开始我们简单介绍过IGBT的基本结构和工作原理,不同的行业对使用IGBT时,对于其深入的程度可能不一样,但是作为一个开关器件,开通和关断的过程,我觉得有必要了解一下。随着载流子寿命控制等技术的应用,IGBT关断损耗得到了明显改善;此外,大功率IGBT器件内部续流二极管的反向恢复过程,极大地增加了IGBT的开通损耗,因此,IGBT的开通过程越来越引起重视。

分析IGBT在不同工况条件下的开关波形,对器件华北电力大学学报2017的开通损耗、可能承受的电气应力、电磁干扰噪声

等进行评估,为驱动电路进行优化提供指导,从而改善IGBT的开通特性。由于实际运用中,我们遇到的大多负载都属于感性负载,所以今天我们就基于感性负载的情况下聊聊IGBT的开通过程,从IGBT阻断状态下的空间电荷分布开始分析,研究了IGBT输入电容随栅极电压变化的关系,揭示了栅极电压密勒平台形成的机理,分析了驱动电阻对栅极电压波形的影响。研究了IGBT集电极电流的上升特点;分析了IGBT集射极电压的下降特点,揭示了回路杂散电感对集射极电压的影响规律。

02IGBT的基本结构

前面我们也简单的讲过了IGBT的基本结构,IGBT是由双极型功率晶体管(高耐压、大容量)和MOSFET(高开关速度)构成,所以IGBT具有了两种器件的特性,高耐压、大电流、高开关速度。

上图是IGBT芯片的横向截面图,图中的P+和N+表示集电区和源区为重掺杂,N-表示基区掺杂浓度较低。IGBT和MOSFET一样,在门极上外加正向电压即可导通,但由于通过在漏极上追加了P+层,使得在导通状态下,P+层向N基极注入空穴,从而引发了传导性能的转变,因此,IGBT和MOSFET相比,可以得到极低的通态电阻,也就是IGBT拥有较低的通态压降。

由图1(a)可知,单个IGBT元胞内包括一个MOSFET,一个PNP晶体管和一个NPN晶体管。PNP晶体管集电极(P基区)与NPN晶体管发射极(N+源区)之间的电压降用等效电阻Rs表示,当Rs足够小时,NPN晶体管的影响可以忽略不计(后面我们讲到IGBT擎住效应的时候,这个寄生的NPN晶体管就会有所涉及,当然,还包括等效电阻Rs)。通常情况下,IGBT的等效电路模型如图1(b)右图所示。

03开通延迟过程

IGBT栅极电容的组成

Ciss=CGE+CGC??输入电容

Coss=CGC+CEC?输出电容

Crss=CGC??米勒电容

下面是比较详细的电容分布:

对于IGBT器件,栅极电容包括四个方面电容,如上图所示:

(1)栅极—发射极金属电容C1

(2)栅极—N+源极氧化层电容C2

(3)栅极—P基区电容Cgp,Cgp由C3,C5构成;?

(4)栅极—集电极电容Cgc,Cgc由C4,C6构成。其中,栅极—发射极电容(也称为输入电容)为Cge=C1+C2+Cgp,栅极—集电极电容(也称为反向传输电容或密勒电容)为Cgc。此外,Cgp随栅极电压的变化而变化,Cgc随IGBT集射极电压的变化而变化。电容Cgp的变化趋势如下图所示。因此,Cgp随着电压的增加,其电容值先减小,随着电压的进一步增加,其大小又逐渐增加,并达到稳定值。

开通延时过程中驱动回路等效电路

由于在IGBT集电极电流上升之前,IGBT仍然处于关断状态,栅极电压的变化量相对于IGBT的阻断电压可以忽略不计。因此,栅极电压的上升过程对于栅极—集电极电容(Cgc)及其电荷量的影响可以忽略不计,因此开通延时阶段的充电过程只针对电容C1、C2和Cgp。因此,结合驱动回路的等效电路,可以得到上述充电过程中驱动回路的等效电路如下图所示:

其中Vg为栅极驱动板输出电压,Rg为驱动电阻,Cin为驱动板输出端口电容,Rs和Ls分别为驱动回路寄生电阻和寄生电感。栅极电压开始上升一段时间后达到阈值电压,集电极电流开始上升,这个过程也称之为开通延迟,一般我们表示为td(on)。

基于上述分析可知,栅极电压在到达阈值电压之前,输入电容并不是恒定值,而是有一个由大逐渐变小,再逐步增大的过程。因此,在IGBT开通过程中,驱动回路并不是给恒定电容充电。下图是开通过程栅极电压上升趋势:

米勒平台过程

栅极电压在上升到一定值后,会有一个栅极电压维持水平的阶段,这个电压称之为密勒平台电压。由上面分析可知,当栅极电压大于阈值电压,IGB

文档评论(0)

A~下一站守候 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档