先进半导体在能源互联网构建中的发展机遇.docx

先进半导体在能源互联网构建中的发展机遇.docx

  1. 1、本文档共11页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

?

?

先进半导体在能源互联网构建中的发展机遇

?

?

刘谨华程海雨李擎赵有泽

纵观人类发展历史,每一次工业革命都离不开能源类型和使用方法的革新。第3次科技革命,以原子能和信息技术等发明和应用为主,随着社会的不断发展,基于互联网理念构建的信息能源融合广域网概念被提出。在能源短缺与全球变暖的大背景下,能源互联网作为一个能源共享、绿色环保的技术,成为未来世界各国争夺的新的技术领域之一。

能源互联网,是以电力系统为核心,以互联网及其他前沿信息技术为基础,以分布式可再生能源为主要一次能源,与天然气网络、交通网络等其他系统紧密耦合而形成的复杂多网流系统[1]。能源互联网以互联网云端服务为指挥中心,将电力系统作为各能源的转换枢纽,将多个系统紧密耦合形成复杂的能源与信息网络(图1)。

能源互联网作为一个能源与信息结合的系统,具有开放、互联、分布式、对等、共享等理念,以及具有以下特征[2]:能够支持多类型能源的互联,提高能源综合使用效率;能够支持可再生能源的接入和消纳;支持能量自由传输和用户广泛接入的互联网架构;支持集中与分布相结合的结构等特征。可以看到,能源互联网不是单纯的互联网与能源的相加,而是互联网、智能电网与可再生能源三者的结合,智能电网作为能源互联网的核心,同时接入可再生能源,利用互联网高效传输的优势最大限度的对能源进行配置,实现能源向清洁、低碳、环保转型。

智能网络是能源互联网的关键技术支持。能源互联网在信息通讯方面,需要多样信息的实时接入能力,高速稳定的数据传送能力,高效的数据处理能力,智能的数据分析与决策能力,以及强大的信息安全保障[3]。基于半导体材料开发而成的芯片是互联网强大的算力核心,随着能源互联网的发展与推广,芯片产品的市场需求将会进一步增大,对半导体材料的自身性能与制造能力提出了更高的要求。

作为电子世界的基石、现代电子世界的核心器件,半导体材料的基本特性决定了器件的基本物理特性。对于单晶硅、锗构成的半导体在著名的摩尔定律下发展越来越接近其物理极限,一个个技术瓶颈使得一代半导体开发速度降低。与此同时,先进的半导体材料也相继被提出,从第1代的硅(Si)锗,到第2代的砷化镓、锑化铟等,以及现在的第3代半导体,碳化硅(SiC)与氮化镓。相比于第1代半导体,第3代半导体具有禁带宽度更宽、电子漂移饱和速率更高、绝缘击穿场强更高、热导率更高等优势,适用于高温、高频、高压、高功率器件。基于上述先进半导体材料所制造的硬件设备也具有上述优点,这在需要大量数据传送,能量转换的能源互联网中有着良好的发展前景。

1第3代半导体材料研究现状

随着硅材料电力电子设备的不断优化,性能已经接近Si材料的物理极限,而第3代半导体的应用使得功率器件的性能有着飞跃性的提升。从1992年美国北卡州立大学功率半导体研究中心[4]在全世界首次研制成功阻断电压,描述了SiC肖特基势垒二极管的制作及其特性后,在世界各地范围内,已经有许多科研工作者在衬底、外延片、器件设计制造等方面展开研究。

苏州维特莱恩公司与俄罗斯LETI法创始人Tairov及其团队[5]采用电阻法加热方式,研制出4英寸和6英寸SiC单晶生长技术。研究结果表明,晶体最大直径为160mm、等径厚度达25~35mm、微管密度≤2cm2/个、基面位错密度≤1200cm2/个、电阻率0.01~0.035Ω·cm,晶体利用率高达85%。采用电阻法加热能够有效避免晶体生长过程中多型、层错缺陷增殖的出现,更加适合6英寸以上的SiC晶体的制备。4英寸和6英寸SiC晶体实际测量如图2、图3所示。

中国科学院半导体研究所刘兴昉[6]等人通过外延生长的方法在4H—SiC衬底上制备了P+/P/N—外延薄膜。相比于注入法,具有参杂精度高、阱区几何尺寸的优势。

南京电子器件研究所刘涛等人[7]利用仿真优化了常开型高压4H—SiCJFET的器件结构,自主研发3000V10A4H—SiC结型场效应晶体管,完成的SiCJFET器件如图4所示。测试表明当栅极电压偏置VG=-6V时,JFET样管阻断电压达到3000V,泄露电流低于100μA;当栅极电压偏置为7V,漏电压VD=3V时,正向电流达到10A以上,对应的电流密度为100A/cm2。

新能源电力系统国家重点实验室彭娇阳等人[8]针对的SiCMOSFET短路栅源极失效的判定方法做了相应的研究(图5),在对比传统的基于uGS的传统栅源极短路判定方法具有延迟较高,以及波形中断时uGS的上升程度不明显容易误判的缺点。于是彭娇阳等人提出了基于IGSS的栅源极的失效判定方法。通过设定短路冲击强度,利用在短路冲击下,MOSFET栅极电介质层发生的特殊变化导致器件的性能变化,最终导致SiCMOSFET的IGSS的参数增大,以此为基础判断器件的栅源极失效。

广东美的制冷

文档评论(0)

133****6472 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档