图像生成:BigGAN:图像生成的未来趋势与BigGAN的发展.pdfVIP

图像生成:BigGAN:图像生成的未来趋势与BigGAN的发展.pdf

此“教育”领域文档为创作者个人分享资料,不作为权威性指导和指引,仅供参考
  1. 1、本文档共21页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多

图像生成:BigGAN:图像生成的未来趋势与BigGAN的发展

1图像生成技术概述

在深度学习领域,图像生成技术是一种前沿的研究方向,它利用神经网络

模型从随机噪声中生成逼真的图像。这一技术不仅在艺术创作、娱乐、广告等

领域有广泛应用,还在科学研究、医学成像、安全监控等方面展现出巨大潜力。

图像生成技术的核心在于深度生成模型,其中最著名的包括生成对抗网络

(GANs)、变分自编码器(VAEs)和自回归模型等。

1.1生成对抗网络(GANs)

生成对抗网络由IanGoodfellow等人在2014年提出,是一种通过两个神经

网络模型——生成器(Generator)和判别器(Discriminator)的对抗训练来生

成图像的技术。生成器的目标是生成与真实数据分布相似的图像,而判别器则

试图区分生成的图像和真实图像。通过这种“猫鼠游戏”式的训练,生成器逐

渐学会生成高质量的图像。

1.1.1示例代码:基本的GAN模型

importtorch

importtorch.nnasnn

importtorch.optimasoptim

fromtorchvisionimportdatasets,transforms

#定义生成器

classGenerator(nn.Module):

def__init__(self):

super(Generator,self).__init__()

self.main=nn.Sequential(

nn.Linear(100,256),

nn.ReLU(True),

nn.Linear(256,512),

nn.ReLU(True),

nn.Linear(512,1024),

nn.ReLU(True),

nn.Linear(1024,784),

nn.Tanh()

)

defforward(self,input):

returnself.main(input)

1

#定义判别器

classDiscriminator(nn.Module):

def__init__(self):

super(Discriminator,self).__init__()

self.main=nn.Sequential(

nn.Linear(784,1024),

nn.ReLU(True),

nn.Dropout(0.3),

nn.Linear(1024,512),

nn.ReLU(True),

nn.Dropout(0.3),

nn.Linear(512,256),

nn.ReLU(True),

nn.Dropout(0.3),

nn.Linear(256,1),

nn.Sigmoid()

)

defforward(self,input):

returnself.main(input)

#初始化模型和优化器

generator=Generator()

discriminator=Discriminator()

optimizerG=optim.Adam(generator.parameters(),lr=0.0002)

optimizerD=optim.Adam(discriminator.parameters(),lr=0.0002)

#加载MNIST数据集

transform=transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5,),(0.5,))])

data=datasets.MNIST(root=./data,train=True,download=True,transform=transform)

#训练循环

forepochinrange(num_epochs):

fori,(real_images,_)inenumerate(data_loader):

#训练

文档评论(0)

找工业软件教程找老陈 + 关注
实名认证
服务提供商

寻找教程;翻译教程;题库提供;教程发布;计算机技术答疑;行业分析报告提供;

1亿VIP精品文档

相关文档