基于多变量模糊神经网络的汽轮机负荷控制方法.docx

基于多变量模糊神经网络的汽轮机负荷控制方法.docx

  1. 1、本文档共6页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

??

?

??

基于多变量模糊神经网络的汽轮机负荷控制方法

?

??

?

?

?

?

?

?

?

???

?

?

?

?

?

摘要:目前的汽轮机负荷控制中,通常采用广义预测技术来进行负荷控制,但控制函数的拟定较差,控制时的稳定性不佳,波动较大。因此,提出基于多变量模糊神经网络的汽轮机负荷控制方法研究。首先建立其影响汽轮机负荷的数据分析模型,作为控制依靠。其次利用多变量模糊神经网络对模型中的数据进行运算,并自动校正,来实现对于汽轮机的负荷控制。为了验证设计方法的有效性,设计实验,利用Simulink工具来构建汽轮机的仿真环境,并使用设计方法与传统方法共同进行热点负荷的控制,实验结果证明,设计方法控制更加稳定,性能更优,存在可行性。

关键词:汽轮机;负荷控制;多变量模糊神经网络;数据模型;

中图分类号:TP237文献标识码:A

0引言

不同工况下,汽轮机的供应设备需求的负载会存在变化,而汽轮机的负荷控制直接影响着汽轮机的性能,因此要求汽轮机负荷控制稳定、准确[1]。通常在汽轮机单元机组中,控制间接参数并维持能量守恒,实现汽轮机的负荷控制。该方法虽然控制的稳定性较高,但当负荷需要作出改变时,往往需要大量时间才能实现负荷的更改[2]。还有学者提出利用PID控制组件,结合广义预测技术来实现控制,但该方法控制的稳定性较低,负荷容易出现波动,难以满足高稳定的控制要求[3]。

1基于多变量模糊神经网络的汽轮机负荷控制设计

汽轮机负荷数据分析模型

为了确定影响汽轮机负荷的数据,首先需要建立汽轮机负荷数据分析模型[4]。通常下,汽轮机的做功流程可如下所示:

图1汽轮机做功原理图

在负荷数据分析模型中拟定的汽轮机中共存在级加热器,高压缸的抽汽口数为,则功率可以表示为:(1)

式中,代表机组功率,单位为KW,代表汽轮机效率,代表主蒸汽焓值,单位为kJ/kg,代表再热蒸汽焓升,单位为kJ/kg,代表模型机构中的气焓,单位为kJ/kg,代表模型机构中的抽汽口蒸汽焓值,单位为kJ/kg,代表主蒸汽流量,单位为kg/s,代表汽轮机各级抽汽口流量,单位为kg/s,代表再热气前的加热器个数。在不同负荷下,加热器的抽汽量,受到管道阻力系数和边界条件的情况影响,以抽汽口的压力以及加热器的饱和压力来定义。通常情况下汽轮机的抽汽量和管道直径的压差存在线性关系,因此可以将模型中汽轮机的抽汽量进行简化表示:

(2)

式中,代表汽轮机的抽汽口压力,代表汽轮机加热器的饱和压力,与分别代表方程拟合系数。

1.2多变量模糊神经网络控制函数的确定

利用模糊神经网络算法,导入至计算机中,即可使用预先编辑好的控制程序来实现对模糊控制器控制规律的控制[5]。首先利用采样的数据,确定被控制量。设其中的误差信号为,并将作为控制器的输入向量。采用模糊语言来对网络中的误差进行描述,得到模糊语言的子集,而子集以模糊向量的形式进行表现。并使其和模糊规则之间进行模糊决策,得出模糊控制量,公式为:

(3)

为了实现精确控制,对模糊量精确化转换,即去模糊化。建立误差变化量,而、以及其中包含的模糊集为,其中代表负大,代表负小,代表零,代表正小,代表正大。进一步定义模糊集中的论域,描述模糊集中的隶属度。建立模糊加权推理法,并将结论变为,则得到:

在规则中和代表以及的模糊集合。作为模糊结合内的元素,代表权重,将以及作为前提,定义模糊集中的隶属度:

(4)

采用函数来作为的函数,并取一次函数:

(5)

同时利用模糊加权性的推理法的形式,将其变为加权函数的推理,推理结论计算如下:

(6)

而在一般情况下,权重函数作为的非负函数,而作为函数的推理。并将其中函数作为运算神经网络的输入向量,输入至神经网络中。其中,将模糊函数中的作为神经网络的输入向量,则多变量模糊神经网络控制函数为:

(8)

式中,为网络中的第个节点的中心矢量,为网络中的第个节点的基宽向量。至此,完成了利用神经网络函数设计汽轮机负荷的数据控制方法。

2实验论证分析

为了验证设计的负荷控制方法的可行性,本文采用MATLAB内的Simulink工具来建立汽轮机仿真环境,对设计负荷控制方法的可行性进行验证。

2.1汽轮机环境

实验中仿真的汽轮机环境中,包含汽轮机的双模糊热参数,负荷控制系统中包含有5个模糊控制器,即汽轮机的热负荷主控制器以及解耦控制器、汽轮机电负荷主控制器以及解耦控制器。

2.2实验结果

实验使用本文方法与传统方法进行对比,首先以进行控制时的解耦结果作为判断指标,额定控制的电负荷为0.51kW/h,热负荷为0.17kW/h,实验结果如下:

表1热电负荷解耦仿真控制结果

控制时间

本文控制方法

传统控制方法

文档评论(0)

189****4123 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档