影响AI未来发展原因有哪些AI未来发展趋势如何.docx

影响AI未来发展原因有哪些AI未来发展趋势如何.docx

  1. 1、本文档共7页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

??

?

??

影响AI未来发展原因有哪些AI未来发展趋势如何

?

??

?

?

?

?

?

?

?

???

?

?

?

?

?

导读

上个世纪五十年代,麦卡锡当时为达特茅斯会议命名了一个在那时看起来别出心裁的名字:人工智能夏季研讨会(SummerResearchProjectonArtificialIntelligence),由此“人工智能(ArtificialIntelligence)”这个概念开始走向世界。那么,AI未来发展趋势如何?影响AI未来发展原因有哪些呢?

上个世纪五十年代,麦卡锡当时为达特茅斯会议命名了一个在那时看起来别出心裁的名字:人工智能夏季研讨会(SummerResearchProjectonArtificialIntelligence),由此“人工智能(ArtificialIntelligence)”这个概念开始走向世界。那么,AI未来发展趋势如何?影响AI未来发展原因有哪些呢?

影响AI未来发展原因有哪些

从发展意义来看,人工智能(AI)在不断的进步,并且随着这种进步势必会改变一大批产业的形态。此外,从另一方面看,人工智能技术的背后有三大支柱:算法、算力和数据,这三者相辅相成、相互制约,但其中数据是核心要义,只要有了大量优质精准的数据,再加上算法实现高效的机器运算、算力的推动,AI才能越走越远。

“没有好的数据,人工智能将没有未来”已经成为业界共识。

值得一提的是,这里有两个重要的点需要区分:一个是数据,另一个是好的数据:“高质、精准、安全”。

云测数据贾宇航表示:“首先数据是人工智能底层逻辑中不可或缺的支撑要素,因为人工智能的本质就像人类要不断的通过训练来获取技能一样,AI的根基就是训练,需要经过大量数据进行训练,神经网络才能总结出规律,进而熟能生巧的应用到新样本上”。

也就是说,数据是最基本的燃料,没有燃料,AI这艘火箭是不可能直冲云霄,而商业落地更是遥不可及的梦。从自动驾驶到AI聊天、服务机器人,从人脸识别到各类AI边缘落地化产品,数据是真正的“幕后英雄”,无“数据”不“AI”。

其次,要想经算法训练后获得的模型更加智能,仅“数据”远远不够的,这背后更多的是对数据的“高质、精准、安全”的要求。

例如在训练的过程中,高质精准的数据扮演着“教科书”级别的重要角色。如果仅需要识别勺子,但在训练数据中勺子总和碗、筷子一起出现,那么AI系统可能会误入歧途,进入一种“瞎猜”的状态而产生混乱和误差,结果很可能会将碗或筷子识别成勺子。所以对于人工智能来说,虽然大量的训练数据固然很重要,但更重要的是数据的“高质精准”。

再从另一方面看“高质精准的数据”对算法模型来讲究竟有多重要?

现在人工智能处在产业落地前夕,可以说AI产品的精准数据训练直接影响落地产品的良品率;举个不恰当的例子,如果自动驾驶系统的训练数据的缺乏或不精准,则很可能在行驶过程中由于未正确识别物体数据直接导致人身伤亡,这些后果都是不堪设想的。

此外,数据标注的价值不仅体现在物体识别上。当下人工智能整个行业都在往多模态的方向发展,比如以智能驾驶为例,基于传统的车外环境感知系统一般都采用摄像头做设计,以至于存在着测距效果差等缺陷,现在引入激光雷达后,在数据的提升上对应是既有图像又有3D点云的三维数据的耦合。

随着人工智能逐渐从学术走向产品化、落地化、市场化,企业对于场景数据的要求也越来越多维,所以引入更多维度的数据去完善AI产品落地前的模型,也是当下行业发展的趋势。

AI未来发展趋势如何

传统的数据清洗标注工作呈现出一种“数据粗放型处理”的状况,从移动互联中大量获取公开、通用的数据,通过雇佣廉价的劳动力完成数据的清晰标注工作,“道路、天空、大树”大致标注粗糙勾选后,便全部投入应用到神经网络中。

但随着人工智能发展至商业落地前夕,算法模型对高质量、高精度数据的需求极速提升,以往的通用数据集越来越不能满足AI企业的数据需要,人工智能落地越来越专注于小场景和专业领域。人工智能不再是漂浮在“空中的楼阁”,基于AI实际应用场景的数据服务,已成为人工智能落地的核心地基。

贾宇航表示:“在这个行业中有一个‘garbageingarbageout’的理论,即如果标注完的数据精度达不到标准,那么训练出来的算法也是不精准的。”如今一味粗放的处理模式既不能满足逐渐商用的AI企业的数据需求,甚至还将影响技术本身的发展。

面对这样的产业趋势,云测数据作为行业的典型代表,直击行业痛点:将“精准高质”“独立安全”作为业务发展的核心,并随着AI企业数据需求不断的演进。

有刚性需求便会有实时供给,有痛点问题便就有解决方案。云测数据基于其自建的数据标注基地和场景实验室,根据AI企业数据需求,进行特定动作、表情和表情的捕捉,将精准的数据投入到流程化

文档评论(0)

186****5366 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档