- 1、本文档共19页,其中可免费阅读10页,需付费49金币后方可阅读剩余内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 4、文档侵权举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
PAGE1
PAGE1
机器学习基础理论概览
1机器学习的定义与分类
机器学习是人工智能的一个分支,它使计算机能够在没有明确编程的情况下从数据中学习并做出预测或决策。机器学习可以分为三大类:监督学习、非监督学习和强化学习。
1.1监督学习
监督学习是通过已知的输入和输出数据对模型进行训练,以预测新的未知数据的输出。例如,使用房价数据集(包含房屋特征和价格)训练模型,预测新房屋的价格。
1.2非监督学习
非监督学习则是在没有已知输出的情况下,寻找数据中的结构和模式。聚类算法是其中的一种,它将数据集中的数据点分组到不同的簇中,使得同一簇内的数据点相似度高,而不同簇之间的相似度
您可能关注的文档
- 机器学习工程师-机器学习基础-概率与统计_贝叶斯统计.docx
- 机器学习工程师-机器学习基础-概率与统计_参数估计.docx
- 机器学习工程师-机器学习基础-概率与统计_抽样调查与数据分析.docx
- 机器学习工程师-机器学习基础-概率与统计_大数定律与中心极限定理.docx
- 机器学习工程师-机器学习基础-概率与统计_多维随机变量及其分布.docx
- 机器学习工程师-机器学习基础-概率与统计_方差分析.docx
- 机器学习工程师-机器学习基础-概率与统计_非参数统计.docx
- 机器学习工程师-机器学习基础-概率与统计_概率论基础.docx
- 机器学习工程师-机器学习基础-概率与统计_回归分析.docx
- 机器学习工程师-机器学习基础-概率与统计_假设检验.docx
文档评论(0)