- 1、本文档共15页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
第
大数据时代的机遇与挑战论文1000字精选五篇
《新挑战》是一款强PK类动作网游,由韩国gamehi采用自主研发的新一代3D游戏图形引擎开发完成,并以游戏中的核心反派角色Karon进行命名。游戏于2005年7月上市。为追求动作游戏的爽快和极致,Gamehi不惜重金专门邀请各国动作高手参与游。以下是为大家整理的大数据时代的机遇与挑战论文1000字精选五篇,欢迎品鉴!
第一篇:大数据时代的机遇与挑战论文1000字随着大数据技术时代的来临,网络信息安全问题成为了信息管理技术研究的重要组成部分。在研究中发现,这种信息安全问题的挑战也是大数据技术发展的一个机遇。因此,技术研究者以大数据技术特征为切入点,针对数据安全问题寻找技术与管理的发展机遇,为大数据时代发展提供支持。
关键词:大数据;信息安全;信息技术;网络平台
大数据时代是当前信息技术产业发展的基础,也是其未来重要的发展方向。因此,做好大数据时代技术特征研究,对于提高信息技术质量,发挥大数据技术性能起到了重要的促进作用。在这一过程中,如何针对大数据时代中信息安全管理遇到的挑战,将其转变为大数据技术的发展机遇,就成为了信息安全技术与管理研究的重要内容。这一研究的开展一方面有助于大数据背景下,网络信息安全质量的提升;另一方面,也为大数据技术发展提供了发展空间。
1大数据技术的主要特征分析
区别于传统的网络信息技术,大数据技术在应用中具有十分鲜明的技术与管理特征。而这些特征不仅是其主要的技术优势,反之也会成为其信息安全中遇到的主要问题。在实际的网络信息管理中,这些特征可以概括为以下4点。
1.1数据量极为庞大
随着计算机技术与网络技术的不断发展,人类计算机数据整体数量也在不断提升中,其数据储存容量由KB到GB体量发展了几十年时间。但是随着大数据技术的应用,计算机储存体量在十几年以内已经由TB发展为PB(PB=1000TB),以及EB(EB=1000PB)计量。特别是当前大型企业数据存储已经出现了独立的EB级别计算机系统。这种数据体量级别的高速提升有利于大数据管理作用的发挥,但也会造成数据信息管理问题的出现。
1.2数据种类的不断增加
在当前的大数据应用体系中,数据信息的种类不仅包括了传统的数据信息,还包括了图片、视频、录音等多种数据信息模式。而大数据系统则是通过对这些信息中的数据性内容进行全面的分析、采集、归类,形成有用的大数据内容。这些种类繁多的数据信息对于计算机网络系统的工作能力有着极大的考验,其管理工作的复杂性远远超过传统的网络数据管理。
1.3数据分析处理速度较快
为了应对大数据处理中庞大的数据体量和复杂的数据类型,大数据处理技术在实际应用中采用了高速分析处理技术,提升了数据处理的整体质量。比如在大数据处理中,云技术的广泛应用就是利用网络平台的理论无限大功能,实现网络数据的高速处理过程。其中,云计算、云数据库和云分析技术的广泛采用,已经成为大数据时代技术的主要特征。
2网络信息安全带来的挑战和机遇
在新的大数据时代中,新技术的应用为网络信息安全带来了极大的挑战,同时,也为信息安全设计发展带来了极大的机遇。就目前网络信息安全实际情况而言,其挑战与机遇可以概括为以下几个方面的内容。
2.1网络数据攻击的主要目标
在当前的网络信息攻击中,大数据目标往往会成为攻击的主要目标。造成这一问题的主要原因包括以下2点:①攻击目标明显。由于大数据分析计算中的数据基数较大,因此,其数据目标远远大于普通的数据库系统,进而更加容易被骇客、病毒等攻击。②数据攻击效益高。由于大数据模式中所储存的数据体量与内容极多,因此,一次攻击所获得数据量远远高于攻击普通目标,骇客攻击这类目标所获得效益远远高于普通目标。针对容易成为网络攻击目标的情况,技术人员开展相关技术研究,提高了大数据模式下数据的安全性。主要的应对方式包括以下2方面的内容:①云安全技术的应用。为了应对较为集中与高级的数据攻击模式,安全技术人员在传统的安全防范基础上广泛应用了云安全技术(云防火墙、云安全软件等),从网络层面便开始数据攻击的防范工作。同时,安全技术人员还可以利用云安全的网络合作模式,形成网络整体的数据安全防护管理,提高单一大数据系统的安全性。②新型反数据攻击技术的应用。在单纯的数据防范技术基础上,技术研究者还根据大数据技术特征发展出了新型反数据攻击技术。这一技术就是利用大数据模式,对防范中发现的攻击者技术特征进行数据分析与推理,查找攻击者IP地址或区域,并对其进行反向攻击,进而为网络安全管理部门工作提供数据坐标支持。虽然目前这一技术处于研究阶段,但其在未来的大数据网络技术应用中一定会得到广泛应用。
2.2各类隐私
文档评论(0)