- 1、本文档共3页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
(word完整版)回归分析第1章课后习题参考答案
(word完整版)回归分析第1章课后习题参考答案
(word完整版)回归分析第1章课后习题参考答案
第一章回归分析概述习题参考答案
1.1变量间的统计关系和函数关系有什么区别?
(1)确定性关系或函数关系:研究的是确定现象非随机变量间的关系。
(2)统计依赖或相关关系:研究的是非确定现象随机变量间的关系.
1。2相关分析和回归分析的区别与联系?
相关分析和回归分析的联系是:它们通常都是基于两正态连续变量的假设,都是处理两变量间相互关系的统计方法,通常两种方法不同时出现;二者的区别是作为相互关系分析的方法,相关分析是通过提供一个相关系数来考察两变量间的联系程度,而回归分析则是重在建立两变量间的函数关系式,因此通常可以先考察相关系数的显著型,如果显著则可以进一步考虑建立变量间的回归方程。此外,相关分析和回归分析又各有一些具体方法用于处理不同的情况,如相关分析还包括等级相关、质量相关和品质相关,回归分析还包括非线性回归等。(其余区别在课本第四页最上面那段)
1。3线性回归模型中随机误差项ε的意义是什么?
引入随机误差?使得变量之间的关系描述为一个随机方程,因而我们可以借助数学方法研究自变量和因变量之间的关系。由于客观经济现象是错综复杂的,随机误差项可以概述表示由于人们的认识以及其他客观原因的局限而没有考虑到的种种偶然因素.
引入随机项扰动的理由如下:
第一,表示被解释变量Y与解释变量X的不确定性关系
第二,模型不可能包含所有变量,次要变量要省略;
第三,确定模型数学形式肯定会有误差;
第四,样本数据会有测量误差;
第五,一些随机因素无法选入模型。
1.4线性回归方程的基本假设是什么?
假设1、解释变量X(x1,x2,…,xp)是确定性变量,不是随机变量;
假设2、随机误差项ε具有零均值、等方差和序列不相关性:
E(εi)=0i=1,2,…
Var(εi)=s2i=1,2,…,n
Cov(εi,εj)=0i≠ji,j=1,2,…,n
假设3ε服从零均值同方差、零协方差的正态分布.
εi~N(0,s2)i=1,2,…,n
假设4、样本容量的个数多于解释变量的个数,即:n〉p
假设5、随机误差项ε与解释变量X之间不相关:
Cov(Xi,εi)=0i=1,2,…,n
(在课本第7页到第8页)
1.6收集整理数据包括哪些内容?
在课本第10到12页
1.7构造回归理论模型的基本根据是什么?
(1)散点图
(2)实际问题背景的理论及方法建模技术原理
(3)经验公式
1.8至于回归模型建立之后为什么要检验?
是因为我们不明确这个模型是否真正揭示了被解释变量与解释变量之间的关系,因而用此模型区做预测、控制和分析时不够慎重的。
1。9回归模型的应用主要在哪几个方面:
经济变量的因素分析、进行经济预测。
1.10为什么要强调定性分析和定量分析相结合?
在课本第14到15页
补充:建立实际回归模型的过程?
一、根据研究目的,设置指标变量
二、样本数据的收集和整理
三、确定理论模型的数学形式
四、模型参数的估计
五、模型的检验与修改
六、回归模型的应用
文档评论(0)