人工智能在长时液流电池储能中的应用:性能优化和大模型.pdfVIP

人工智能在长时液流电池储能中的应用:性能优化和大模型.pdf

  1. 1、本文档共13页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多

第13卷第9期储能科学与技术Vol.13No.9

2024年9月EnergyStorageScienceandTechnologySept.2024

AI辅助先进电池设计与应用专刊

人工智能在长时液流电池储能中的应用:性能优化和大模型

1,31111,211,2

刘子玉,姜泽坤,邱伟,徐泉,牛迎春,徐春明,周天航

123

(中国石油大学(北京),北京102249;中海储能科技(北京)有限公司,北京102249;中国石

油国家卓越工程师学院,北京100096)

摘要:近年来,人工智能(AI)技术在电池设计与优化领域取得了显著进展,特别是在液流电池的研究中展现出

巨大的应用潜力。液流电池因其低成本、大规模、长循环寿命及高安全性,成为新型电力储能系统的研究重点。

然而,传统的实验与仿真方法在探索液流电池设计空间方面效率较低,难以揭示其复杂的物理化学机制。本工

作提出将计算机模拟与数据驱动的AI技术相结合,建立了具备高度可解释性的多物理场驱动模型,并通过机器

学习辅助分析与优化液流电池设计。研究表明,机器学习模型在电压效率、库仑效率和容量预测方面表现优异,

特别是梯度提升模型(gradientboosting,GB)在预测准确性上优于其他模型。通过SHAP分析识别关键影响因素,

并结合电化学反应机理进行解释,为液流电池性能优化提供了科学依据。此外,本工作还开发了一个专门针对

液流电池领域的大语言模型,通过精细的提示工程和文本分析流程,尽可能最小化“幻觉”,有效提升了信息处

理的准确性。本工作的研究表明,AI驱动的

您可能关注的文档

文档评论(0)

新能源知识科普(本账号发布文档均来源于互联网公开资料,仅用于技术分享交流,相关版权为原作者所有。如果侵犯了您的相关权利,请提出指正,我们将立即删除相关资料)。

1亿VIP精品文档

相关文档