遗传算法遗传算法.pptVIP

  1. 1、本文档共10页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多

* 利用遗传算法求Rosenbrock函数的极大值10.5遗传算法求函数极值*10.5.1二进制编码遗传算法求函数极大值求解该问题遗传算法的构造过程:(1)确定决策变量和约束条件;(2)建立优化模型;(3)确定编码方法*用长度为10位的二进制编码串来分别表示两个决策变量x1,x2。10位二进制编码串可以表示从0到1023之间的1024个不同的数,故将x1,x2的定义域离散化为1023个均等的区域,包括两个端点在内共有1024个不同的离散点。从离散点-2.048到离散点2.048,分别对应于从0000000000(0)到1111111111(1023)之间的二进制编码。*将x1,x2分别表示的两个10位长的二进制编码串连接在一起,组成一个20位长的二进制编码串,它就构成了这个函数优化问题的染色体编码方法。使用这种编码方法,解空间和遗传算法的有哪些信誉好的足球投注网站空间就具有一一对应的关系。例如:表示一个个体的基因型,其中前10位表示x1,后10位表示x2。*(4)确定解码方法:解码时需要将20位长的二进制编码串切断为两个10位长的二进制编码串,然后分别将它们转换为对应的十进制整数代码,分别记为y1和y2。依据个体编码方法和对定义域的离散化方法可知,将代码y转换为变量x的解码公式为例如,对个体*它由两个代码所组成上述两个代码经过解码后,可得到两个实际的值(5)确定个体评价方法:由于Rosenbrock函数的值域总是非负的,并且优化目标是求函数的最大值,故可将个体的适应度直接取为对应的目标函数值,即*选个体适应度的倒数作为目标函数(6)设计遗传算子:选择运算使用比例选择算子,交叉运算使用单点交叉算子,变异运算使用基本位变异算子。(7)确定遗传算法的运行参数:群体大小M=80,终止进化代数G=100,交叉概率Pc=0.60,变异概率Pm=0.10。上述七个步骤构成了用于求函数极大值的优化计算基本遗传算法。*采用上述方法进行仿真,经过100步迭代,最佳样本为即当时,Rosenbrock函数具有极大值,极大值为3905.9。仿真程序:chap5_1.m*遗传算法的优化过程是目标函数J和适应度函数F的变化过程。由仿真结果可知,随着进化过程的进行,群体中适应度较低的一些个体被逐渐淘汰掉,而适应度较高的一些个体会越来越多,并且它们都集中在所求问题的最优点附近,从而有哪些信誉好的足球投注网站到问题的最优解。*10.5.2实数编码遗传算法求函数极大值求解该问题遗传算法的构造过程:(1)确定决策变量和约束条件;(2)建立优化模型;(3)确定编码方法:用2个实数分别表示两个决策变量,分别将的定义域离散化为从离散点-2.048到离散点2.048的Size个实数。*(4)确定个体评价方法:个体的适应度直接取为对应的目标函数值,即选个体适应度的倒数作为目标函数*(5)设计遗传算子:选择运算使用比例选择算子,交叉运算使用单点交叉算子,变异运算使用基本位变异算子。(6)确定遗传算法的运行参数:群体大小M=500,终止进化代数G=200,交叉概率Pc=0.90,采用自适应变异概率即变异概率与适应度有关,适应度越小,变异概率越大。*上述六个步骤构成了用于求函数Rosenbrock极大值的优化计算的实数编码遗传算法。十进制编码求函数Rosenbrock极大值。仿真程序见chap10_2.m。仿真程序经过200步迭代,最佳样本为即当,时,函数具有极大值,极大值为3880.3。*10.6基于遗传算法优化的RBF网络逼近10.6.1遗传算法优化原理在7.3节的RBF网络逼近算法中,网络权值、高斯函数的中心矢量和基宽向量的初值难以确定,如果这些参数选择不当,会造成逼近精度的下降甚至RBF网络的发散。采用遗传算法可实现RBF网络参数的优化。*为获取满意的逼近精度,采用误差绝对值指标作为参数选择的最小目标函数。式中,为逼近的总步骤,为第步RBF

文档评论(0)

135****6994 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档