- 1、本文档共2页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
数据标注报告
目前人工智能商业化在算力、算法和技术方面基本达到阶段性成熟,想要更加落地,解决行业具体痛点,需要大量经过标注处理的相关数据做算法训练支撑,可以说数据决定了AI的落地程度。目前,我国人工智能行业呈现良好的发展态势,而作为强关联性的数据标注行业,随人工智能发展而迎来高速增长。
数据决定了AI落地程度,基础数据服务是商业化过程中重要的一环
人工智能产业链包括三层:基础层、技术层和应用层。其中,基础层是人工智能产业的基础;技术层是人工智能产业的核心;应用层是人工智能面向特定应用场景需求而形成软硬件产品或解决方案。
人工智能基础数据服务指为AI算法训练及优化提供的数据采集、清洗、信息抽取、标注等服务,以采集和标注为主。其中,数据标注为人工智能企业提供了大量带标签的数据,供机器训练和学习,保证了算法模型的有效性。
AI公司和科技公司占主要份额,AI应用三大阶段对数据标注服务产生差异化需求
从需求方来看,AI数据标注客户分为AI公司、科技公司、科研机构、行业企业四类。AI公司和科技公司占主要份额,AI公司更聚焦于视觉、语音等某一类型的基础数据服务,而科技公司结合集团优势,向人工智能整体发力,不同部门会产生多类型数据需求,科研机构需求占比较小。
此外传统意义上的行业企业,如汽车厂商、手机品牌商、安防厂商等传统企业围绕自身业务进行技术拓展,也开始产生AI基础数据需求,并且量级逐渐增大,未来将释放更多市场空间。
从不同阶段的AI数据标注服务需求来看,企业应用人工智能算法要经历研发、训练和落地三个阶段,不同阶段对于数据标注服务也有差异化需求。
研发需求是新算法研发拓展时产生的数据需求,一般量级较大,初期多采用标准数据集产品训练,中后期则需要专业的数据定制采标服务;
训练需求是通过标注数据对已有算法的准确率等能力进行优化,是市场中的主要需求,以定制化服务为主,对算法的准确性有较高要求;
落地场景的业务需求中算法较为成熟,涉及的数据采集和标注更贴合具体业务,如飞机保养中的涂料识别数据等,对于标注能力和供应商主动提出优化意见的服务意识有较强要求。
人工智能规模近2000亿,科技企业AI算法研发投入规模预计超370亿元
2017年7月,国务院印发了《新一代人工智能发展规划》,将人工智能上升到国家战略层面,受益于国家政策的大力支持,以及资本和人才的驱动,我国人工智能行业的发展走在了世界前列。根据沙利文的统计预测,2020年中国人工智能行业市场规模约为1858.2亿元。
2019年中国科技企业技术研发投入约为4005亿元,其中人工智能算法研发投入占比为9.3%,超370亿元,且大部分投入来自互联网科技公司。主要AI算法应用领域——计算机视觉、语音识别/语音合成,以及自然语言处理占比分别为22.5%、2.3%和7.1%,三者中计算机视觉相关算法研发投入占比最大,这与视觉相关创业公司数量、产业需求和政策导向呈正相关联系,计算机视觉目前仍是中国最具代表性的AI应用技术。
文档评论(0)