组会ppt-使用并改进扩散模型用于工业检测[ECCV2024]GLAD Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection.pptx
- 1、本文档共18页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
ECCV2024
BackgroundAnomalydetection(AD)aimstodetectandlocateabnormalpatternsofobjects:itchallengingtocollectenoughabnormalsamplesforallanomalytypesinsituations.ever-changingproductdesignandproductionprocesses,itisimpossibletocollectallanomaliesinadvance.unsupervisedanomalydetection(UAD)hasdrawnmuchattentionwithonlynormalsamplesrequired.
RelatedworksEmbedding-basedmethods:extractfeatureofimagestoevaluateabnormal.Knowledgedistillation-basedmethods:trainstudentnetworkwithnormalsamples,featuresfromthepre-trainedteachernetworkarecomparedwithfeaturesfromthestudentnetworktodetectandlocateanomalies.PaDiMbuildsmultivariateGaussiandistributionsforpatchfeaturesofnormalsamplesandusesMahalanobisdistanceastheanomalyscore.PatchCoreproposesamemorybanktosavefeaturesofnormalimages,whicharecomparedwithfeaturemapsoftestimagestodistinguishthedifferencebetweennormalandabnormalfeatures.Reconstruction-basedmethods:detectedandlocatedviathecomparisonbetweenthegivensampleanditsnormalcounterpart.Basedonthehypothesisthatmodelstrainedonnormalsamplesonlycanreconstructnormalimageswell.Anomaliescanbedetectedbycomparingthesamplesbeforeandafterreconstruction.AE(early),GAN,transformer,UNetarchitecture
MotivationDiffusionmodelshaveprominentmodelingability.Duringthetrainingprocess,thediffusionmodelcapturesthedistributionofnormalsamplesonly.Thesamedenoisingstep:Differentanomaliesisuneven.LesspreserveddetailsoftheoriginalTheanomalynoiseinevitablydeviatesfromthestandardGaussiandistribution.?
MethodInference:AdaptiveDenoisingStep(ADS):achievesabettertrade-offbetweenreconstructionqualityanddetailpreservationability.Spatial-AdaptiveFeatureFusion(SAFF):avoidreconstructionofnormalregions.Training:Anomaly-orientedTrainingParadigm(ATP):allowdiffusionmodeltopredictno
您可能关注的文档
- 房地产-年度策略报告姊妹篇:2025年房地产行业风险排雷手册.docx
- 电动汽车路径规划模型与算法研究进展.docx
- 博实股份(002698)业绩步入高增长期、人形机器人持续推进-东北证券[赵丽明]-20241127【39页】.docx
- SZSD02 0014—2024政务服务数字认证平台(企业和个人电子签章)开发接入规范.docx
- 飞瓜数据:2024年快手双11购物节电商数据报告.docx
- 风电-2024三季报总结:陆风招标大增,海风将迎来新一轮成长周期.docx
- T CRRA 0301—2023 绿色再生塑料产销监管链要求.docx
- 房地产行业数据发布:2024年10月上海土地招拍挂市场.docx
- 2024年抖音电商酒水行业趋势洞察报告.docx
- Cameco(CCJ.US):全球铀资源龙头,乘行业上行东风.docx
文档评论(0)