组会ppt-使用并改进扩散模型用于工业检测[ECCV2024]GLAD Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection.pptx

组会ppt-使用并改进扩散模型用于工业检测[ECCV2024]GLAD Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection.pptx

  1. 1、本文档共18页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

ECCV2024

BackgroundAnomalydetection(AD)aimstodetectandlocateabnormalpatternsofobjects:itchallengingtocollectenoughabnormalsamplesforallanomalytypesinsituations.ever-changingproductdesignandproductionprocesses,itisimpossibletocollectallanomaliesinadvance.unsupervisedanomalydetection(UAD)hasdrawnmuchattentionwithonlynormalsamplesrequired.

RelatedworksEmbedding-basedmethods:extractfeatureofimagestoevaluateabnormal.Knowledgedistillation-basedmethods:trainstudentnetworkwithnormalsamples,featuresfromthepre-trainedteachernetworkarecomparedwithfeaturesfromthestudentnetworktodetectandlocateanomalies.PaDiMbuildsmultivariateGaussiandistributionsforpatchfeaturesofnormalsamplesandusesMahalanobisdistanceastheanomalyscore.PatchCoreproposesamemorybanktosavefeaturesofnormalimages,whicharecomparedwithfeaturemapsoftestimagestodistinguishthedifferencebetweennormalandabnormalfeatures.Reconstruction-basedmethods:detectedandlocatedviathecomparisonbetweenthegivensampleanditsnormalcounterpart.Basedonthehypothesisthatmodelstrainedonnormalsamplesonlycanreconstructnormalimageswell.Anomaliescanbedetectedbycomparingthesamplesbeforeandafterreconstruction.AE(early),GAN,transformer,UNetarchitecture

MotivationDiffusionmodelshaveprominentmodelingability.Duringthetrainingprocess,thediffusionmodelcapturesthedistributionofnormalsamplesonly.Thesamedenoisingstep:Differentanomaliesisuneven.LesspreserveddetailsoftheoriginalTheanomalynoiseinevitablydeviatesfromthestandardGaussiandistribution.?

MethodInference:AdaptiveDenoisingStep(ADS):achievesabettertrade-offbetweenreconstructionqualityanddetailpreservationability.Spatial-AdaptiveFeatureFusion(SAFF):avoidreconstructionofnormalregions.Training:Anomaly-orientedTrainingParadigm(ATP):allowdiffusionmodeltopredictno

文档评论(0)

170333868030ac7 + 关注
实名认证
内容提供者

8065113005000065

1亿VIP精品文档

相关文档