基于ByteHouse OLAP架构如何实现⾼性能向量检索-2024大数据大模型峰会.pdf

基于ByteHouse OLAP架构如何实现⾼性能向量检索-2024大数据大模型峰会.pdf

  1. 1、本文档共40页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

基于ByteHouseOLAP架

构如何实现⾼性能向量检索

“大模型”与“大数据”两者犹如车之双轮,合力驱动数据价值和企业价值的增长。大数据和大模型,作为双核驱动力,正在引领我们迈向更加智能、高效和便捷的时代。

⽕⼭引擎ByteHouse团队/彭信东

DataFunCon#2024

Contents

⽬录

向量检索概念及场景性能与资源使⽤优化

“大模型”与“大数据”两者犹如车之双轮,合力驱动数据价值和企业价值的增长。大数据和大模型,作为双核驱动力,正在引领我们迈向更加智能、高效和便捷的时代。

ByteHouse向量检索实现性能评测及未来⼯作

Contents

⽬录

向量检索概念及场景性能与资源使⽤优化

“大模型”与“大数据”两者犹如车之双轮,合力驱动数据价值和企业价值的增长。大数据和大模型,作为双核驱动力,正在引领我们迈向更加智能、高效和便捷的时代。

ByteHouse向量检索实现性能评测及未来⼯作

什么是向量检索

“大模型”与“大数据”两者犹如车之双轮,合力驱动数据价值和企业价值的增长。大数据和大模型,作为双核驱动力,正在引领我们迈向更加智能、高效和便捷的时代。

⼤模型

“大模型”与“大数据”两者犹如车之双轮,合力驱动数据价值和企业价值的增长。大数据和大模型,作为双核驱动力,正在引领我们迈向更加智能、高效和便捷的时代。

企业级⼤模型问答系统

“大模型”与“大数据”两者犹如车之双轮,合力驱动数据价值和企业价值的增长。大数据和大模型,作为双核驱动力,正在引领我们迈向更加智能、高效和便捷的时代。

向量检索案例

“大模型”与“大数据”两者犹如车之双轮,合力驱动数据价值和企业价值的增长。大数据和大模型,作为双核驱动力,正在引领我们迈向更加智能、高效和便捷的时代。

向量检索的本质

“大模型”与“大数据”两者犹如车之双轮,合力驱动数据价值和企业价值的增长。大数据和大模型,作为双核驱动力,正在引领我们迈向更加智能、高效和便捷的时代。

向量检索索引

•Table-based

•LSH

•Tree-based

“大模型”与“大数据”两者犹如车之双轮,合力驱动数据价值和企业价值的增长。大数据和大模型,作为双核驱动力,正在引领我们迈向更加智能、高效和便捷的时代。

•KD-Tree,Annoy

•Cluster-based

•IVF,SCANN,SPANN

•Graph-based

•HNSW,NSG,DiskANN

Cluster-based:IVFFlat

•聚类训练

•优点:

•构建速度快“大模型”与“大数据”两者犹如车之双轮,合力驱动数据价值和企业价值的增长。大数据和大模型,作为双核驱动力,正在引领我们迈向更加智能、高效和便捷的时代。

•额外内存占⽤少

•缺点

•查询速度受维度信息

影响较⼤

•⾼精度查询计算量较⼤

Graph-based:HNSW

•构建图结构

•优点

“大模型”与“大数据”两者犹如车之双轮,合力驱动数据价值和企业价值的增长。大数据和大模型,作为双核驱动力,正在引领我们迈向更加智能、高效和便捷的时代。

•查询速度快,并发性能好

•缺点

•构建速度慢,内存占⽤⾼

向量数据库overview

“大模型”与“大数据”两者犹如车之双轮,合力驱动数据价值和企业价值的增长。大数据和大模型,作为双核驱动力,正在引领我们迈向更加智能、高效和便捷的时代。

向量数据库分类

•专⽤向量数据库

•Vector-c

文档评论(0)

优选文档 + 关注
实名认证
内容提供者

专注于发布优质文档,喜欢的可以关注一下哦~

1亿VIP精品文档

相关文档