大数据技术应用在5G网络运维中的探讨分析.docx

大数据技术应用在5G网络运维中的探讨分析.docx

  1. 1、本文档共10页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

大数据技术应用在5G网络运维中的探讨分析

摘要:身处5G时代的伟大变革,面对通信技术的迭代升级,结合互联网和通信行业融合技术的发展需求,大数据技术应用已经尤为突出和重要,成为通信运营商捕捉商机的重要手段。

关键词:Bigdata、采集、存储与管理、分析与挖掘、机器学习

引言:随着“大数据”时代的到来,信息成为企业战略资产,市场竞争要求越来越多的数据被长期保存,每天都会从管道、业务平台、支撑系统中产生大量有价值的数据,这些数据有可能被长期埋没而未发挥出其应有的作用。大数据技术的应用,可以将这些数据的商业价值得到有效开发,为运营商带来巨大的商机。下面从五个方面进行解析:

一、精细化营销

在网络时代,基于数据的商业智能应用为运营商带来巨大价值。通过大数据挖掘和处理,可以改善用户体验,及时准确地进行业务推荐和客户关怀;优化网络质量,调整资源配置;助力市场决策,快速准确确定公司管理和市场竞争策略。例如,对使用环节如流量日志数据的分析可帮助区分不同兴趣关注的人群,对设置环节如HLR/HSS数据的分析可帮助区分不同活动范围的人群,对购买环节如CRM的分析可帮助区分不同购买力和信用度的人群,这样针对新的商旅套餐或导航服务的营销案就可以更精准的向平时出行范围较大的人士进行投放。

二、智慧网络运营

互联网技术在不断发展,基于网络的信令数据也在不断增长,这给运营商带来了巨大的挑战,只有不断提高网络服务质量,才有可能满足客户的存储需求。在这样的外部刺激下,运营商不得不尝试大数据的海量分布式存储技术、智能分析技术等先进技术,努力提高网络维护的实时性,预测网络流量峰值,预警异常流量,防止网络堵塞和宕机,为网络改造、优化提供参考,从而提高网络服务质量,提升用户体验。

三、互联网金融

通信行业的大数据应用于金融行业目前是征信领域。例如“招联消费金融公司”即是较好案例。招商与联通的合作模式主要体现在招商银行有对客户信用评级的迫切需求,而联通拥有大量真实而全面的用户信息。当招行需要了解某位潜在客户的信用或个人情况时,可向联通发起申请获得数据;或者给出某些标签。类似于此的商业模式将会在互联网金融大发展时期获得更多重视。目前,国内互联网金融发展的一大壁垒即是信用体系的缺失,而运营商拥有的宝贵大数据将是较好的解决渠道之一。

四、合作双赢

随着大数据时代的来临,数据量和数据产生的方式发生了重大的变革,运营

商掌握的信息更加全面和丰满,这无疑为运营商带来了新的商机。目前运营商主要掌握的信息包括了移动用户的位置信息、信令信息等。就位置信息而言,运营商可以通过位置信息的分析,得到某一时刻某一地点的用户流量,而流量信息对于大多数商家具有巨大的商业价值。通过对用户位置信息和指令信息的历史数据和当前信息分析建模可以服务于公共服务业,指挥交通、应对突发事件和重大活动,也可以服务于现代的零售行业。运营商可以在数据中心的基础上,搭建大数据分析平台,通过自己采集、第三方提供等方式汇聚数据,并对数据进行分析,为相关企业提供分析报告。在未来,这将是运营商重要的利润来源。例如,通过系统平台,对使用者的位置和运动轨迹进行分析,实现热点地区的人群频率的概率性有效统,比如根据景区人流进行优化。

五、可以交由第三方挖掘

在大数据时代下,传统的经营分析系统遇到挑战,运营商会考虑如何更好地使用其大数据。运营商可以采取旧方式,自身采购硬件设备,并交由第三方进行运维和分析。未来趋势,运营商也可以采购相关产品,将后续数据挖掘等工作交由第三方来完成变现。

一、大数据技术概述

1、大数据的概念

“大数据”(Bigdata),或称巨量数据、海量数据、大资料,指的是所涉及的数据量规模巨大到无法通过人工,在合理时间内达到截取、管理、处理、并整理成为人类所能解读的信息。一般认为,“大数据”具有4V特点:Volume(数据量大)、Velocity(输入和处理速度快)、Variety(数据多样性)和Value(价值密度低)。

1.1Volume(数据量大)

大数据的特征其实是我们现在理解的海量数据。“大数据”在互联网行业是必备项:互联网公司在日常运营中生成、累积的用户网络行为的数据。比如社交电商平台每天的产生订单,各个短视频、论坛、社区发布的帖子、评论及小视频,每天发送的电子邮件,以及上传的图片、视频与音乐,等等,这些无数个体产生的数据规模很庞大,数据体量早已达到了PB级别以上,大数据的大量就是我们说的海量数据。

1.2、Velocity(输入和处理速度快)

随着网络传输速率不断攀升,从传统的百兆到千兆万兆网络,移动网络也已经逐步升级到了5G时代,数据的产生和传输都越来越高速。所以客户越来越强调实时反馈,就是无论是在线看电影还是在线直播、刷视频都要求低延时,对于传输、存储、播放都要求高度,人们和企业都越来越依赖

文档评论(0)

祝秀珍 + 关注
实名认证
内容提供者

好文档 大家想

1亿VIP精品文档

相关文档