网站大量收购闲置独家精品文档,联系QQ:2885784924

一天搞懂深度学习.pptxVIP

  1. 1、本文档共50页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多

深度学习智慧融入街镇

目录content深度学习概述第一章深度学习应用研究第二章总结与展望第三章

深度学习概述第一章历史与背景基本思想经典模型

历史与背景”假设我们要让程序判断下面的图像是否为猫:判断图像是否为猫的规则该怎么描述?用枚举的方法,即为每张可能的图像对应一个结果(是猫,不是猫),根据这个对应规则进行判定。对于高度和宽度都为256像素的黑白图像,如果每个像素值的值是0-255之间的整数,根据排列组合原理,所有可能的图像数量为:所以,与其总结好知识告诉人工智能,还不如让人工智能自己去学习知识。要识别猫的图像,可以采集大量的图像样本,其中一类样本图像为猫,另外的不是猫。然后把这些标明了类别的图像送入机器学习程序中进行训练。——机器学习

1-1历史与背景机器学习发展阶段1980s:登上历史舞台1990-2012:走向成熟和应用2012:深度学习时代神经网络卷土重来1980年机器学习作为一支独立的力量登上了历史舞台。典型的代表是:1984:分类与回归树???1986:反向传播算法???1989:卷积神经网络代表性的重要成果有:1995:支持向量机(SVM)1997:AdaBoost算法1997:循环神经网络(RNN)和LSTM2000:流形学习2001:随机森林在与SVM的竞争中,神经网络长时间内处于下风,直到2012年局面才被改变。由于算法的改进以及大量训练样本的支持,加上计算能力的进步,训练深层、复杂的神经网络成为可能,它们在图像、语音识别等有挑战性的问题上显示出明显的优势。

历史与背景1958:Perceptron(linearmodel)1969:Perceptronhaslimitation1980s:Multi-layerperceptronDonothavesignificantdifferencefromDNNtoday1986:BackpropagationUsuallymorethan3hiddenlayersisnothelpful1989:1hiddenlayeris“goodenough”,whydeep?2006:RBMinitialization2009:GPU2011:Starttobepopularinspeechrecognition2012:winILSVRCimagecompetition2015.2:Imagerecognitionsurpassinghuman-levelperformance?2016.3:AlphaGObeatsLeeSedol2016.10:SpeechrecognitionsystemasgoodashumansUpsanddownsofDeepLearning

历史与背景

历史与背景

历史与背景

历史与背景

深度学习原理Step1:defineasetoffunctionStep2:goodnessoffunctionStep3:pickthebestfunctionNeuralNetwork1-2基本思想

NeuralNetwork“Neuron”DifferentconnectionleadstodifferentnetworkstructuresNeuralNetwork1-2基本思想

基本思想8layers19layers22layersAlexNet(2012)VGG(2014)GoogleNet(2014)16.4%7.3%6.7%Deep=Manyhiddenlayers

基本思想AlexNet(2012)VGG(2014)GoogleNet(2014)152layers3.57%ResidualNet(2015)Taipei101101layers16.4%7.3%6.7%Deep=ManyhiddenlayersSpecialstructure

NeuralNetwork??…………y1y2yMW1W2WLb2bLxa1a2yy?xb1W1x+?b2W2+bLWL+…b1…1-2基本思想

1-2基本思想…………y1y2yMOutputLayerHiddenLayersInputLayerFeatureextractorreplacing

文档评论(0)

135****3907 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档