网站大量收购闲置独家精品文档,联系QQ:2885784924

方框滤波代码解析pycharm.docx

  1. 1、本文档共4页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

方框滤波代码解析pycharm

1.图像平滑

2.均值滤波

3.方框滤波

4.高斯滤波

5.中值滤波

PS:本文介绍图像平滑,想让大家先看看图像处理的效果,后面还会补充一些基础知识供大家学习。文章参考自己的博客及网易云课堂李大洋老师的讲解,强烈推荐大家学习。

图像平滑

1.图像增强

图像增强是对图像进行处理,使其比原始图像更适合于特定的应用,它需要与实际应用相结合。对于图像的某些特征如边缘、轮廓、对比度等,图像增强是进行强调或锐化,以便于显示、观察或进一步分析与处理。图像增强的方法是因应用不同而不同的,研究内容包括:(参考课件和左飞的《数字图像处理》)

2.图像平滑

图像平滑是一种区域增强的算法,平滑算法有邻域平均法、中指滤波、边界保持类滤波等。在图像产生、传输和复制过程中,常常会因为多方面原因而被噪声干扰或出现数据丢失,降低了图像的质量(某一像素,如果它与周围像素点相比有明显的不同,则该点被噪声所感染)。这就需要对图像进行一定的增强处理以减小这些缺陷带来的影响。

简单平滑-邻域平均法

3.邻域平均法

图像简单平滑是指通过邻域简单平均对图像进行平滑处理的方法,用这种方法在一定程度上消除原始图像中的噪声、降低原始图像对比度的作用。它利用卷积运算对图像邻域的像素灰度进行平均,从而达到减小图像中噪声影响、降低图像对比度的目的。

但邻域平均值主要缺点是在降低噪声的同时使图像变得模糊,特别在边缘和细节处,而且邻域越大,在去噪能力增强的同时模糊程度越严重。

首先给出为图像增加噪声的代码。

-coding:utf-8-X-importcv2importnumpyasnp

#读取图片img=cv2.imread(test.jpg,cv2.IMREAD_UNCHANGED)rows,cols,chn=img.shape

加噪声foriinrange(5000):x=np.random.randint(0,rows)y=np.random.randint(0,cols)img[x,y,:]=255

cv2.imshow(noise,img)

等待显示cv2.waitKey(0)cv2.destroyAllWindows()

输出结果如下所示:

均值滤波

1.原理

均值滤波是指任意一点的像素值,都是周围NXM个像素值的均值。例如下图中,红色点的像素值为蓝色背景区域像素值之和除25。

其中红色区域的像素值均值滤波处理过程为:((197+25+106+156+159)+(149+40+107+5+71)+(163+198+XX226XX+223+156)+(222+37+68+193+157)+(42+72+250+41+75))/25

其中5X5的矩阵称为核,针对原始图像内的像素点,采用核进行处理,得到结果图像。

文档评论(0)

友情 + 关注
实名认证
内容提供者

好文件大家都可以分享

1亿VIP精品文档

相关文档