- 1、本文档共4页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
AEM制氢技术进展及经济性分析
1、离子交换膜(AEM)水电解制氢
AEM在某种程度上是PEM和传统的隔膜基碱液电解的混合。AEM电解槽原理如图3所示,在阴极,水被还原产生氢气和OH–。OH–通过隔膜流向阳极,在阳极表面重新结合产生氧气。
Li等研究了高度季铵化聚苯乙烯和聚亚苯基AEM高性能水电解槽,结果表明,在85℃时,1.8V电压下的电流密度为2.7A/cm2。当以NiFe和PtRu/C为催化剂进行制氢反应时,电流密度显著下降至906mA/cm2。Chen等研究了高效非贵金属电解催化剂用于碱性聚合物薄膜电解槽。在不同温度下,分别用H2/NH3、NH3、H2、N2气体还原NiMo氧化物合成电解制氢催化剂。结果表明,H2/NH3还原的NiMo–NH3/H2催化剂性能最优,在1.57V,80℃时,电流密度高达1.0A/cm2,能量转化效率为75%。德国Evonik工业公司在其现有的气体分离膜技术的基础上,开发了一种专利聚合物材料,可用于AEM电解槽,目前在中试线上扩大膜生产,下一步是验证系统的可靠性并提高电池规格,同时扩大生产。
目前,AEM电解槽面临的主要挑战是缺少高电导率和耐碱性的AEM,以及贵金属电催化剂增加了制造电解装置的成本。同时,CO2进入电解槽薄膜会降低膜电阻和电极电阻,从而降低电解性能。未来AEM电解槽发展的主要方向是:①发展具有高导电率、离子选择性、长期碱性稳定性的AEM。②克服贵金属催化剂成本高的问题,开发不含贵金属且高性能的催化剂。③目前AEM电解槽的目标成本是20美元/m2,需要通过廉价原材料和减少合成步骤降低合成成本,从而降低AEM电解槽整体成本。④降低电解槽内CO2含量,提高电解性能。
Li等研究了高度季铵化聚苯乙烯和聚亚苯基AEM高性能水电解槽,结果表明,在85℃时,1.8V电压下的电流密度为2.7A/cm2。当以NiFe和PtRu/C为催化剂进行制氢反应时,电流密度显著下降至906mA/cm2。Chen等研究了高效非贵金属电解催化剂用于碱性聚合物薄膜电解槽。在不同温度下,分别用H2/NH3、NH3、H2、N2气体还原NiMo氧化物合成电解制氢催化剂。结果表明,H2/NH3还原的NiMo–NH3/H2催化剂性能最优,在1.57V,80℃时,电流密度高达1.0A/cm2,能量转化效率为75%。德国Evonik工业公司在其现有的气体分离膜技术的基础上,开发了一种专利聚合物材料,可用于AEM电解槽,目前在中试线上扩大膜生产,下一步是验证系统的可靠性并提高电池规格,同时扩大生产。
目前,AEM电解槽面临的主要挑战是缺少高电导率和耐碱性的AEM,以及贵金属电催化剂增加了制造电解装置的成本。同时,CO2进入电解槽薄膜会降低膜电阻和电极电阻,从而降低电解性能。未来AEM电解槽发展的主要方向是:①发展具有高导电率、离子选择性、长期碱性稳定性的AEM。②克服贵金属催化剂成本高的问题,开发不含贵金属且高性能的催化剂。③目前AEM电解槽的目标成本是20美元/m2,需要通过廉价原材料和减少合成步骤降低合成成本,从而降低AEM电解槽整体成本。④降低电解槽内CO2含量,提高电解性能。
我国以可再生能源(如风电、光伏、水电)进行电解水制氢,电价控制在0.25元/kWh以下时,制氢成本具有相对经济性(15.3~20.9元/kg)。碱性电解与PEM电解制氢技术经济指标见表1。
3、结语
在绿氢价格大幅降低前,天然气仍将用于生产蓝氢,尤其是在天然气储备充足和基础设施完善的地区。事实上,由于甲烷具有较高氢碳比,CO2排放相对较少,化石燃料天然气仍是目前氢气生产的最主要来源。人们对绿氢将成为能源组合中的主要参与者的期望需要慎重考虑。从可再生能源到现有电力部门脱碳的增长需求是非常重要的,因此,出于商业原因,短期到中期需将重点放在蓝氢上。然而,绿氢LCOH的下降曲线将决定绿氢在商业价格上超过蓝氢的时间,尽管市场规模将受到可再生能源可用性的限制,但这个商业超越时间可能很快就会到来。
您可能关注的文档
- 58MW 热水锅炉烘炉升温曲线图.docx
- 58MW循环流化床锅炉对流管更换施工方案.docx
- 半导体工厂厂务监控FMCS系统.docx
- 病原微生物实验室活动风险评估报告.docx
- 测试人员考核度量指标表详解【附绩效考核表】.docx
- 产业园区运营的五个层面.docx
- 城市更新与产业创新的融合发展.docx
- 储能液冷系统分析.docx
- 存量工业用地开发模式及典型案例.docx
- 存量资产盘活与城市更新升级.docx
- 某县纪委监委开展“校园餐”突出问题专项整治工作汇报22.docx
- 中小学校园食品安全与膳食经费管理专项整治工作自查报告66.docx
- 某县委常委、宣传部部长年度民主生活会“四个带头”个人对照检查发言材料.docx
- XX县委领导班子年度述职述廉报告3.docx
- 某县纪委关于校园餐问题整治工作落实情况的报告.docx
- 中小学校园食品安全与膳食经费管理专项整治工作自查报告22.docx
- 某县税务局党委领导班子年度民主生活会“四个带头”对照检查材料.docx
- 某县委书记在县委常委班子年度民主生活会专题学习会上的讲话.docx
- 某县纪委校园餐问题整治工作落实情况的报告.docx
- 某区委副书记、区长年度民主生活会对照检查材料.docx
文档评论(0)