- 1、本文档共15页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
第八章成对数据的统计分析8.2.1一元线性回归模型
学习目标能通过具体实例说明一元线性回归模型修改的依据与方法.
情景引入通过前面的学习我们已经了解到,根据成对样本数据的散点图和样本相关系数,可以推断两个变量是否存在相关关系、是正相关还是负相关,以及线性相关程度的强弱等.如果能像建立函数模型刻画两个变量之间的确定性关系那样,通过建立适当的统计模型刻画两个随机变量的相关关系,那么我们就可以利用这个模型研究两个变量之间的随机关系,并通过模型进行预测.
新知探究探究:生活经验告诉我们,儿子的身高与父亲的身高相关.一般来说,父亲的身高较高时,儿子的身高通常也较高.为了进一步研究两者之间的关系,有人调查了14名男大学生的身高及其父亲的身高,得到的数据如表所示.编号1234567891011121314父亲身高/cm174170173169182172180172168166182173164180儿子身高/cm176176170170185176178174170168178172165182
可以发现,散点大致分布在一条从左下角到右上角的直线附近,表明儿子身高和父亲身高线性相关.利用统计软件,求得样本相关系数为r≈0.886,表明儿子身高和父亲身高正线性相关,且相关程度较高。
思考:根据表中的数据,儿子身高和父亲身高这两个变量之间的关系可以用函数模型刻画吗?编号1234567891011121314父亲身高/cm174170173169182172180172168166182173164180儿子身高/cm176176170170185176178174170168178172165182表中的数据,存在父亲身高相同而儿子身高不同的情况.例如,第6个和第8个观测父亲的身高均为172cm,而对应的儿子的身高为176cm和174cm;同样在第3,4个观测中,儿子的身高都是170cm,而父亲的身高分别为173cm,169cm.可见儿子的身高不是父亲身高的函数同样父亲的身高也不是儿子身高的函数,所以不能用函数模型来刻画.
思考:从成对样本数据的散点图和样本相关系数可以发现,散点大致分布在一条直线附近表明儿子身高和父亲身高有较强的线性关系.我们可以这样理解,由于有其他因素的存在,使儿子身高和父亲身高有关系但不是函数关系.那么影响儿子身高的其他因素是什么?影响儿子身高的因素除父亲的身外,还有母亲的身高、生活的环境、饮食习惯、营养水平、体育锻炼等随机的因素,儿子身高是父亲身高的函数的原因是存在这些随机的因素.
?
其中,Y称为因变量或响应变量,x称为自变量或解释变量;a和b为模型的未知参数,a称为截距参数,b称为斜率参数;e是Y与bx+a之间的随机误差,模型中的Y也是随机变量,其值虽然不能由变量x的值确定,但是却能表示为bx+a与e的和(叠加),前一部分由x所确定,后一部分是随机的,如果e=0,那么Y与x之间的关系就可用一元线性函数模型来描述.
问题1.你能结合父亲与儿子身高的实例,说明回归模型①的意义?①?
问题2.你能结合具体实例解释产生模型①中随机误差项的原因吗?产生随机误差e的原因有:(1)除父亲身高外,其他可能影响儿子身高的因素,比如母亲身高、生活环境、饮食习惯和锻炼时间等.(2)在测量儿子身高时,由于测量工具、测量精度所产生的测量误差.(3)实际问题中,我们不知道儿子身高和父亲身高的相关关系是什么,可以利用一元线性回归模型来近似这种关系,这种近似关系也是产生随机误差e的原因.
知识应用例.将图中的点按父亲身高的大小次序用折线连起来,所得到的图像是一个折线图,可以用这条折线图表示儿子身高和父亲身高之间的关系吗?
解析:不能。一是父亲的身高与儿子的身高之间是随机关系,不是函数关系;二是这组数据仅是总体的一个样本,不一定能很好地描述两个变量之间的关系。
练:说明函数模型与回归模型的区别,并分别举出两个应用函数模型与回归模型的例子。解析:函数模型刻画的是变量之间具有的函数关系,是一种确定性的关系。回归模型刻画的是变量之间具有的相关关系,不是一种确定性关系,即回归模型刻画的是两个变量之间的随机关系。举例:路程与速度的关系、正方体体积与边长的关系可以应用函数模型刻画,体重与身高的关系、冷饮销量与气温的关系可以用回归模型刻画。
本节内容结束谢谢!
您可能关注的文档
- 8.1.1金属矿物的开发利用 课件.pptx
- 8.1自然资源的开发利用 第二课时 课件-2021-2022学年高一下学期化学人教版(2019)必修第二册(33360064).pptx
- 8.1自然资源的开发利用 第一课时 课件-2021-2022学年高一下学期化学人教版(2019)必修第二册(33360062).pptx
- 8.2.1化肥、农药的合理施用;合理用药 课件.pptx
- 8.2.2安全使用食品添加剂 课件.pptx
- 8.2.2一元回归模型参数的最小二乘估计PPT【新教材 新思维高中数学】-2021-2022学年下学期高二数学同步教学(人教A版(2019)选择性必修第三册).pptx
- 8.3.1分类变量与列联表PPT【新教材 新思维高中数学】-2021-2022学年下学期高二数学同步教学(人教A版(2019)选择性必修第三册).pptx
- 8.3.2独立性检验PPT【新教材 新思维高中数学】-2021-2022学年下学期高二数学同步教学(人教A版(2019)选择性必修第三册).pptx
- 8.3环境保护与绿色化学 课件.pptx
- 8.3环境保护与绿色化学 课件-2021-2022学年高一下学期化学人教版(2019)必修第二册(33360068).pptx
文档评论(0)