网站大量收购闲置独家精品文档,联系QQ:2885784924

银行大数据解决方案10.docxVIP

  1. 1、本文档共12页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多

银行大数据解决方案

一、工程背景

2015年8月31日,国务院印发了《促进大数据开展的行动纲要》,这一战略性文件为我国大数据开展与应用提供了指导纲领和政策保障。在数据已成为银行重要资产和珍贵资源的形势下,《纲要》也为银行利用大数据推动转型开展指明了方向和实施路径,带来了开展新机遇。

当前中国银行业正在步入大数据时代的初级阶段。经过多年的开展与积累,目前银行业的数据量已经到达100TB以上级别,并且非结构化数据量正在以更快的速度增长。银行业在数据方面有天然的优势:一方面,银行在业务开展过程中积累了包括客户身份、资产负债情况、资金收付交易等大量高价值密度的数据,这些数据在运用专业技术挖掘和分析之后,将产生巨大的商业价值;另一方面,银行具有较为充足的预算,可以吸引到实施大数据的高端人才,也有能力采用大数据的必威体育精装版技术。

总体来看,尽管大数据在银行业的应用刚刚起步,目前影响还比拟小,但是从开展趋势来看,应充分认识大数据带来的深远影响。银行业需要进行统一的大数据平台建设,建立综合预测分析体系,整合生产系统数据资源。在此根底上与《纲要》规划的信用信息共享交换平台和公共机构数据统一开放平台有效对接,双管齐下扩展数据来源和采集渠道。这可以一方面高效收集、有效整合企业和社会公共数据,掌握企业真实需求,实现精准营销。尤其可通过农业农村信息综合效劳和农业资源要素数据共享,获取三农数据和小微企业数据,解决数据挖掘和分析难点,提升三农和小微金融效劳水平。另一方面利用平台动态监控企业经营及个人信用变化情况,强化信用风险智能化管理和预警,降低信用评估、风险控制的难度和不确定性,实现风险管控和精准营销的双重收益。

二、银行大数据平台总体框架

2.1银行大数据平台框架概述

银行大数据建设是基于已有的信息化根底,充分利用和整合已有信息化资源,打破行业、部门之间的信息壁垒,运用大数据技术进行采集、加工、建模、分析,将数据价值融入到金融之中,从而提升创新能力和产品效劳能力。

〔1〕大数据分析根底平台

按照功能划分数据区,设计数据模型,在统一流程调度下,整合各类数据,同现有的企业级数据仓库和历史数据存储系统一起,形成根底数据体系,提供支撑经营管理的各类数据应用,支撑上层应用。

〔2〕数据应用系统

基于根底数据平台,持续建设各类数据应用系统,通过数据挖掘、计量分析和机器学习等手段,对丰富的大数据资源进行开发使用,并将数据决策化过程结合到风控、营销、营运等经营管理活动,充分发挥大数据价值。

〔3〕数据管控

建立数据标准,提升数据质量,加强元数据管理能力,为平台建设及平安提供保障。

2.2银行大数据平台建设原那么

平台是大数据的根底实施,其建设、设计和系统实现过程中,应遵循如下指导原那么:

经济性:基于现有场景分析,对近年数据量进行合理评估,确定大数据平台规模,后续根据实际情况再逐步优化扩容。可扩展性:架构设计与功能划分模块化,考虑各接口的开放性、可扩展性,便于系统的快速扩展与维护,便于第三方系统的快速接入。

可靠性:系统采用的系统结构、技术措施、开发手段都应建立在已经相当成熟的应用根底上,在技术效劳和维护响应上同用户积极配合,确保系统的可靠;对数据指标要保证完整性,准确性。

平安性:针对系统级、应用级、网络级,均提供合理的平安手段和措施,为系统提供全方位的平安实施方案,确保企业内部信息的平安。大数据技术必须自主可控。

先进性:涵盖结构化,半结构化和非结构化数据存储和分析的特点。借鉴互联网大数据存储及分析的实践,使平台具有良好的先进性和弹性。支撑当前及未来数据应用需求,引入对应大数据相关技术。

平台性:归纳整理大数据需求,形成统一的大数据存储效劳和大数据分析效劳。利用多租户,实现计算负荷和数据访问负荷隔离。多集群统一管理。

分层解耦:大数据平台提供开放的、标准的接口,实现与各应用产品的无缝对接

2.3银行根底数据层来源

2.3.1银行内部大数据资源

金融行业的数据大多数来源于客户自身信息以及其金融交易行为,其中八成左右的数据集中于银行。因此依照目前积累沉淀的数量资源情况,将数据主要分为三大类:

第一类:客户根底数据

客户信息数据,即客户根底数据,主要是指描述客户自身特点的数据。

个人客户信息数据包括:个人姓名、性别、年龄、身份信息、联系方式、职业、生活城市、工作地点、家庭地址、所属行业、具体职业、婚姻状况、教育情况、工作经历、工作技能、账户信息、产品信息、个人爱好等等。

企业客户信息数据包括:企业名称、关联企业、所属行业、销售金额、注册资本、账户信息、企业规模、企业地点、分公司情况、客户和供给商、信用评价、主营业务、法人信息等等。

目前银行业的客户信息数据积累数量无疑是最大,如果将这些割裂的数据整合到大数据平台,形成全局数据,再按照自身需要进行归类和打标签,

文档评论(0)

199****8042 + 关注
实名认证
文档贡献者

相信自己,相信明天

1亿VIP精品文档

相关文档