网站大量收购闲置独家精品文档,联系QQ:2885784924

判别分析数学建模.pptVIP

  1. 1、本文档共10页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多

如果就用这个数据,但不用所有的变量,而只用4个变量进行判别:企业规模(is)、服务(se)、雇员工资比例(sa)、资金周转速度(cs)。结果的图形和判别的正确与否就不一样了。下图为两个典则判别函数导出的150个企业的二维点图。它不如前面的图那么容易分清楚了01原先的图02Disc.sav例子Disc.sav例子下面是基于4个变量时分类结果表:这个表的结果是有87个点(96.7%)得到正确划分,有3个点被错误判别;其中第二类有两个被误判为第一类,有一个被误判为第三类。训练样本中必须有所有要判别的类型,分类必须清楚,不能有混杂。01要选择好可能由于判别的预测变量。这是最重要的一步。当然,在应用中,选择的余地不见得有多大。02要注意数据是否有不寻常的点或者模式存在。还要看预测变量中是否有些不适宜的;这可以用单变量方差分析(ANOVA)和相关分析来验证。03判别分析是为了正确地分类,但同时也要注意使用尽可能少的预测变量来达到这个目的。使用较少的变量意味着节省资源和易于对结果进行解释。04判别分析要注意什么?在计算中需要看关于各个类的有关变量的均值是否显著不同的检验结果(在SPSS选项中选择Wilks’Lambda、Rao’sV、TheSquaredMahalanobisDistance或TheSumofUnexplainedVariations等检验的计算机输出),以确定是否分类结果是仅仅由于随机因素。1此外成员的权数(SPSS用priorprobability,即“先验概率”,和贝叶斯统计的先验概率有区别)需要考虑;一般来说,加权要按照各类观测值的多少,观测值少的就要按照比例多加权。2对于多个判别函数,要弄清各自的重要性。3注意训练样本的正确和错误分类率。研究被误分类的观测值,看是否可以找出原因。4判别分析要注意什么?SPSS选项打开disc.sav数据。然后点击Analyze-Classify-Discriminant,把group放入GroupingVariable,再定义范围,即在DefineRange输入1-3的范围。然后在Independents输入所有想用的变量;但如果要用逐步判别,则不选Enterindependentstogether,而选择Usestepwisemethod,在方法(Method)中选挑选变量的准则(检验方法;默认值为Wilks’Lambda)。为了输出Fisher分类函数的结果可以在Statistics中的FunctionCoefficient选Fisher和UnStandardized(点则判别函数系数),在Matrices中选择输出所需要的相关阵;还可以在Classify中的Display选summarytable,Leave-one-outclassification;注意在Classify选项中默认的PriorProbability为Allgroupsequal表示所有的类都平等对待,而另一个选项为Computefromgroupsizes,即按照类的大小加权。在Plots可选Combined-groups,Territorialmap等。14.4.3判别分析实例P379鸢尾花数据(花瓣,花萼的长宽)5个变量:花瓣长(slen),花瓣宽(swid),花萼长(plen),花萼宽(pwid),分类号(1:Setosa,2:Versicolor,3:Virginica)(data14-04)Statistics→Classify→Discriminant:Variables:independent(slen,swid,plen,pwid)Grouping(spno)Definerange(min-1,max-3)Classify:priorprobability(Allgroupequal)usecovariancematrix(Within-groups)Plots(Combined-groups,Separate-groups,Territorialmap)Display(Summarytable)Statistics:Descriptive(Means)FunctionCoefficients(Fisher’s,Unstandardized)Matrix(Within-groupscorrelation,Within-groupscovariance,Separate-groupscovariance,Totalcovariance)Save:

文档评论(0)

gongmengjiao + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档