- 1、本文档共10页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
*这两种方法都是数据降维方法:比如说一个28道题的问卷,那就有28个维度,维度过多会给解释带来不便,因此我们希望能够用更少的维度来进行评价,但同时也要保证评价时的准确度的损失较少。****实际上两种分析技术之间存在共同性,并不能够做到完全的区分。*实际研究中,研究者更多地还是采用了正交旋转的方法,1991-2000年国内两种心理学期刊发表的运用因子分析的文章中,高达60%的文章使用正交旋转,而斜交旋转只占到了6%。**探索性因素分析
exploratoryfactoranalysis原悦在开发量表时,我们需要通过因子分析技术来识别测量变量中的潜在结构,在这个过程中应该首先使用EFA,然后再进行验证性因子分析(confirmatoryfactoranalysis)。EFA对因子模型没有先验,假设任何变量都有可能与任何公因子相关联,目标是用少数几个潜在的、不可观测的随机变量(因子)来描述原始变量之间的关系。21KMO检验和球形检验用于检验数据是否适合进行因子分析,一般来说,KMO0.5,球形检验显著,说明数据适合进行因子分析。主成分分析法vs因子分析法抽取方法:3操作主成分分析能够将大量的相关变量转化为一组很少的不相关变量,这些无关变量称为主成分。主成分分析是将一组变量通过线性变换转换为一组不相关的变量,并且在变换的过程中变量的总方差是保持不变的,每个主成分都是由原有的P个变量线性组合得到的,在诸多主成分Z中,Z1在总方差中占的比重最大,说明它综合原有变量的能力最强,其余的主成分在总方差中占的比重会依次递减,说明越往后的主成分综合原信息的能力越弱。在之后的分析中我们使用前面几个方差最大的主成分来代替原有变量来进行,一般情况下要求前几个主成分所包含的信息不少于原始信息的85%,这样既减少了变量的数目,又能够用较少的主成分反映原有变量的绝大部分信息。主成分分析:因子分析:通过因子分析得到的新变量是对每一个原始变量进行内部剖析。比如说,原始变量是成千上万的糕点,每一种糕点的原材料都有面粉、油、糖及相应的不同原料,这其中面粉、油、糖是所有糕点的共同材料,这就可以代表因子分析中的因子变量,当我们通过分析正确地选择了因子变量后,如果想要考虑成千上万糕点的物价变动,那么只需要重点考虑面粉、油、糖等公共因子的物价变动即可。因子分析得到的新变量不是对原始变量的重新组合,而是对原始变量进行分解,分解为公共因子和特殊因子两个部分,因子分析的目的就是要利用少数几个公共因子去解释较多个观测变量中存在的复杂关系。主成分分析和因子分析的不同:主成分分析侧重于“变异量”,得到的主成分是原始变量的线性组合;因子分析更重视相关变量的“共变异量”,因子分析需要构造因子模型,原始变量是公共因子的线性组合,因子作为影响观测变量的潜在变量,目的是找出起作用的少数关键因子因子分析的评价结果没有主成分分析准确,因子分析比主成分分析的计算工作量大主成分分析中当给定唯一的数据矩阵后主成分一般是固定的,但是因子分析可以通过旋转得到不同的因子结果,这使得因子分析在解释方面更加有优势由于特殊因子的存在所有因子分析得到的公共因子只能够解释部分变异,主成分分析能够解释所有变异使用场景:主成分分析主要作为一种探索性的技术,也就是在进行多元数据分析之前,用主成分分析来分析数据可以对自己的数据有一个大致的了解,主要用于①了解数据;②在进行聚类分析之前利用主成分分析降维提升计算速度;③当变量数很多个案数不多时直接判别分析可能无法得到结果,这时候可以使用主成分分析来对变量进行简化;④利用主成分分析来判断多元变量直接是否存在共线性。而一般来说,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于使用因子分析,并且可以借助旋转技术来帮助得到更好的解释。而如果想要把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析的话,则可以使用主成分分析。010302主成分法:假设变量是各因子的线性组合,从原始变量的总体方差变异出发,尽量使原始变量的方差能够被公因子解释,并且各公因子对原始变量方差变异的解释比例依次减少。01主轴因子法:不同于主成分法从原始变量的方差出发,而是从变量相关系数的矩阵出发,使原始变量的相关程度尽可能地被公因子解释。这种方法主要在于解释变量的相关性,确定内在结构,当研究的目的在于确定结构,而对变量方差的情况不太关心时,可以使用这种方法。02极大似然法:要求公共因子和特殊因子都服从正态分布,在样本量较大时(1500以上)使用效果较好,此外,最大似然法能够输出载荷的显著性以及置信区间。03建立因子分析模型的目的不仅是要找出主因子,更重要的是要知道每
您可能关注的文档
- 患者发生误吸护理应急预案.ppt
- 放射诊疗许可现场审查基本要求.ppt
- 应用DEA方法讲义.ppt
- 小企业组织结构设计务实.ppt
- 学前儿童发展心理学-课件(I).ppt
- 建立财务管理工作表的基本方法.ppt
- 小班美术:有趣的饼干PPT.ppt
- 归园田居优秀教案.ppt
- 小鼠常用采血方法.ppt
- 教育学导论(第十一章定稿).ppt
- 2025年贵州工业职业技术学院高职单招高职单招英语2016-2024历年频考点试题含答案解析.docx
- 2025年西昌民族幼儿师范高等专科学校高职单招职业适应性测试近5年常考版参考题库含答案解析.docx
- 2025年西藏警官高等专科学校高职单招语文2018-2024历年参考题库频考点含答案解析.docx
- 2025年贵州工商职业学院高职单招职业技能测试近5年常考版参考题库含答案解析.docx
- 2025年贵州工商职业学院高职单招职业适应性测试近5年常考版参考题库含答案解析.docx
- 2025年贵州农业职业学院高职单招数学历年(2016-2024)频考点试题含答案解析.docx
- 2025年贵州工商职业学院高职单招高职单招英语2016-2024历年频考点试题含答案解析.docx
- 2025年贵州工商职业学院高职单招语文2018-2024历年参考题库频考点含答案解析.docx
- 2025年许昌职业技术学院高职单招数学历年(2016-2024)频考点试题含答案解析.docx
- 2025年许昌职业技术学院高职单招职业技能测试近5年常考版参考题库含答案解析.docx
文档评论(0)