- 1、本文档共12页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
计算机研究与发展DOI:10.7544/issn1000-1239.202440190
Journal
of
Computer
Research
and
Development61(8):1945−1956,2024
Graph4Cache:一种用于缓存预取的图神经网络模型
尚晶武智晖肖智文张逸飞
(中国移动信息技术中心北京100033)
(中移动信息技术有限公司北京100033)
(shangjing@)
Graph4Cache:AGraphNeuralNetworkModelforCachePrefetching
Shang
Jing,
Wu
Zhihui,
Xiao
Zhiwen,
and
Zhang
Yifei
(ChinaMobileInformationTechnologyCenter,Beijing100033)
(ChinaMobileInformationTechnologyCo.,Ltd.,Beijing100033)
AbstractMost
computing
systems
utilize
caching
to
reduce
data
access
latency,
speed
up
data
processing
and
balance
service
load.
The
key
to
cache
management
is
to
determine
the
appropriate
data
to
be
loaded
into
or
discarded
from
the
cache,
as
well
as
the
appropriate
timing
for
cache
replacement,
which
is
critical
to
improving
cache
hit
rate.The
existing
caching
schemes
face
with
two
problems:
In
real-time
and
online
caching
scenarios,
it
is
difficult
to
discern
the
heat
information
of
user
access
to
data
while
ignoring
the
complex
high-order
information
among
data-
access-sequences.
In
this
paper,
we
propose
a
GNN-based
cache
prefetching
network
named
Graph4Cache.
We
model
a
single
access
sequence
into
a
directed
graph
(ASGraph),
where
virtual
nodes
are
used
to
aggregate
the
features
of
all
nodes
in
graph
and
represent
the
whole
sequence.
Then
a
cross
sequence
undirected
graph
(CSGraph)
is
constructed
from
the
virtual
nodes
of
ASGraphs
to
learn
cross-sequence
features,
which
greatly
complements
the
limited
item
transitions
in
a
single
sequence.
By
fusing
the
information
of
these
two
graphs
,
we
learn
the
high-order
correlations
among
sequences
and
get
abundant
user
intents.
Experimental
results
on
multiple
public
data
sets
demonstrate
the
effectiveness
of
this
method.
Gra
您可能关注的文档
- 2024年度TikTok生态发展白皮书-.pdf
- 2025年轻人租车出行趋势报告-dt商业观察-202501.pdf
- 2025年外汇展望:全球货币市场分析与趋势++2025+FX+Outlook:Global+Currency+Market+Analysis+and+Trends.pdf
- 2025全球智能穿戴市场洞察报告.pdf
- DL-MAML:一种新的蝴蝶物种自动识别模型.pdf
- GPT系列大语言模型在自然语言处理任务中的鲁棒性.pdf
- GraphMLP-Mixer:基于图-多层感知机架构的高效多行为序列推荐方法.pdf
- HSEGRL:一种分层可自解释的图表示学习模型.pdf
- 超越GDP:衡量经济和社会表现的重要指标+Beyond+GDP:Measuring+What+Counts+For+Economic+And+Social+Performance.pdf
- 锂电材料行业景气有望见底回升.pdf
文档评论(0)