网站大量收购闲置独家精品文档,联系QQ:2885784924

Graph4Cache:一种用于缓存预取的图神经网络模型.pdf

Graph4Cache:一种用于缓存预取的图神经网络模型.pdf

  1. 1、本文档共12页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

计算机研究与发展DOI:10.7544/issn1000-1239.202440190

Journal

of

Computer

Research

and

Development61(8):1945−1956,2024

Graph4Cache:一种用于缓存预取的图神经网络模型

尚晶武智晖肖智文张逸飞

(中国移动信息技术中心北京100033)

(中移动信息技术有限公司北京100033)

(shangjing@)

Graph4Cache:AGraphNeuralNetworkModelforCachePrefetching

Shang

Jing,

Wu

Zhihui,

Xiao

Zhiwen,

and

Zhang

Yifei

(ChinaMobileInformationTechnologyCenter,Beijing100033)

(ChinaMobileInformationTechnologyCo.,Ltd.,Beijing100033)

AbstractMost

computing

systems

utilize

caching

to

reduce

data

access

latency,

speed

up

data

processing

and

balance

service

load.

The

key

to

cache

management

is

to

determine

the

appropriate

data

to

be

loaded

into

or

discarded

from

the

cache,

as

well

as

the

appropriate

timing

for

cache

replacement,

which

is

critical

to

improving

cache

hit

rate.The

existing

caching

schemes

face

with

two

problems:

In

real-time

and

online

caching

scenarios,

it

is

difficult

to

discern

the

heat

information

of

user

access

to

data

while

ignoring

the

complex

high-order

information

among

data-

access-sequences.

In

this

paper,

we

propose

a

GNN-based

cache

prefetching

network

named

Graph4Cache.

We

model

a

single

access

sequence

into

a

directed

graph

(ASGraph),

where

virtual

nodes

are

used

to

aggregate

the

features

of

all

nodes

in

graph

and

represent

the

whole

sequence.

Then

a

cross

sequence

undirected

graph

(CSGraph)

is

constructed

from

the

virtual

nodes

of

ASGraphs

to

learn

cross-sequence

features,

which

greatly

complements

the

limited

item

transitions

in

a

single

sequence.

By

fusing

the

information

of

these

two

graphs

,

we

learn

the

high-order

correlations

among

sequences

and

get

abundant

user

intents.

Experimental

results

on

multiple

public

data

sets

demonstrate

the

effectiveness

of

this

method.

Gra

文档评论(0)

186****0576 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:5013000222000100

1亿VIP精品文档

相关文档