网站大量收购闲置独家精品文档,联系QQ:2885784924

GraphMLP-Mixer:基于图-多层感知机架构的高效多行为序列推荐方法.pdf

GraphMLP-Mixer:基于图-多层感知机架构的高效多行为序列推荐方法.pdf

  1. 1、本文档共13页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

计算机研究与发展DOI:10.7544/issn1000-1239.202440137

Journal

of

Computer

Research

and

Development61(8):1917−1929,2024

GraphMLP-Mixer:基于图-多层感知机架构的高效多行为序列推荐方法

1,21,2111

卢晓凯封军韩永强王皓陈恩红

1

(认知智能全国重点实验室(中国科学技术大学)合肥230000)

2

(安徽省优质采科技发展有限责任公司合肥230000)

(xiaokailu@)

GraphMLP-Mixer:AGraph-MLPArchitectureforEfficientMulti-Behavior

SequentialRecommendationMethod

1,2

1,2

1

1

1

Lu

Xiaokai,

Feng

Jun,

Han

Yongqiang,

Wang

Hao,

and

Chen

Enhong

1

(StateKeyLaboratoryofCognitiveIntelligence(UniversityofScienceandTechnologyofChina),Hefei230000)

2

(YouZhiCaiScienceandTechnologyDevelopmentCo.,Ltd,Hefei230000)

AbstractIn

the

domain

of

multi-behavior

sequence

recommendation,

Graph

Neural

Networks

(GNNs)

have

been

widespreadly

adopted,

yet

they

have

limitations,

notably

in

terms

of

adequately

modeling

the

collaborative

signals

that

exist

between

different

sequences

and

addressing

the

challenges

posed

by

long-distance

dependencies.

To

bridge

these

gaps,

a

novel

framework

named

GraphMLP-Mixer

has

been

introduced.

This

innovative

framework

begins

by

constructing

a

global

item

graph,

which

is

designed

to

bolster

the

model’s

capacity

to

encapsulate

the

collaborative

signals

that

are

present

across

sequences.

It

then

merges

the

perceptron-mixer

architecture

with

graph

neural

networks,

resulting

in

a

graph-perceptron

mixer

model

capable

of

delving

deep

into

the

intricacies

of

user

interests.

GraphMLP-

Mixer

stands

out

for

its

two

principal

strengths:

文档评论(0)

186****0576 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:5013000222000100

1亿VIP精品文档

相关文档