网站大量收购闲置独家精品文档,联系QQ:2885784924

DL-MAML:一种新的蝴蝶物种自动识别模型.pdf

DL-MAML:一种新的蝴蝶物种自动识别模型.pdf

  1. 1、本文档共11页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

计算机研究与发展DOI:10.7544/issn1000-1239.202220860

Journal

of

Computer

Research

and

Development61(3):674−684,2024

DL-MAML:一种新的蝴蝶物种自动识别模型

赵戈伟许升全谢娟英121

1

(陕西师范大学计算机科学学院西安710119)

2

(陕西师范大学生命科学学院西安710119)

(zgv@)

DL-MAML:AnInnovativeModelforAutomaticallyIdentifyingButterflySpecies

1

2

1

Zhao

Gewei,

Xu

Shengquan,

and

Xie

Juanying

1

(SchoolofComputerScience,ShaanxiNormalUniversity,Xi’an710119)

2

(CollegeofLifeSciences,ShaanxiNormalUniversity,Xi’an710119)

AbstractThere

are

tens

of

thousands

of

butterfly

species.

Each

butterfly

species

is

closely

related

to

a

specific

type

of

plants.

It

is

significant

to

study

butterfly

species

automatic

identification.

However,

it

is

very

challenging

to

study

butterfly

species

recognition

via

the

images

taken

in

the

field

environments.

One

reason

is

that

there

are

small

number

of

butterfly

species

in

the

existing

datasets

compared

with

the

reported

species

in

the

world.

The

other

reason

is

that

the

number

of

samples

(images)

of

each

butterfly

species

is

limited

in

the

datasets.

These

situations

make

it

challengeable

to

train

a

general

system

for

butterfly

species

identification

via

machine

learning

algorithms.

In

addition,

butterfly

wings

are

always

folded

in

the

images

taken

in

the

field

environments,

which

make

it

challengeable

to

learn

butterfly

classification

features,

which

further

make

it

difficult

to

study

butterfly

species

recognition

using

machine

learning

techniques.

Therefore,

meta-learning

is

introduced

to

address

the

challenges,

and

DL-MAML

(deep

learning

advanced

model-agnostic

meta-learning)

algorithm

is

proposed

for

identi

文档评论(0)

186****0576 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:5013000222000100

1亿VIP精品文档

相关文档