- 1、本文档共11页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
计算机研究与发展DOI:10.7544/issn1000-1239.202220860
Journal
of
Computer
Research
and
Development61(3):674−684,2024
DL-MAML:一种新的蝴蝶物种自动识别模型
赵戈伟许升全谢娟英121
1
(陕西师范大学计算机科学学院西安710119)
2
(陕西师范大学生命科学学院西安710119)
(zgv@)
DL-MAML:AnInnovativeModelforAutomaticallyIdentifyingButterflySpecies
1
2
1
Zhao
Gewei,
Xu
Shengquan,
and
Xie
Juanying
1
(SchoolofComputerScience,ShaanxiNormalUniversity,Xi’an710119)
2
(CollegeofLifeSciences,ShaanxiNormalUniversity,Xi’an710119)
AbstractThere
are
tens
of
thousands
of
butterfly
species.
Each
butterfly
species
is
closely
related
to
a
specific
type
of
plants.
It
is
significant
to
study
butterfly
species
automatic
identification.
However,
it
is
very
challenging
to
study
butterfly
species
recognition
via
the
images
taken
in
the
field
environments.
One
reason
is
that
there
are
small
number
of
butterfly
species
in
the
existing
datasets
compared
with
the
reported
species
in
the
world.
The
other
reason
is
that
the
number
of
samples
(images)
of
each
butterfly
species
is
limited
in
the
datasets.
These
situations
make
it
challengeable
to
train
a
general
system
for
butterfly
species
identification
via
machine
learning
algorithms.
In
addition,
butterfly
wings
are
always
folded
in
the
images
taken
in
the
field
environments,
which
make
it
challengeable
to
learn
butterfly
classification
features,
which
further
make
it
difficult
to
study
butterfly
species
recognition
using
machine
learning
techniques.
Therefore,
meta-learning
is
introduced
to
address
the
challenges,
and
DL-MAML
(deep
learning
advanced
model-agnostic
meta-learning)
algorithm
is
proposed
for
identi
您可能关注的文档
- 2024年度TikTok生态发展白皮书-.pdf
- 2025年轻人租车出行趋势报告-dt商业观察-202501.pdf
- 2025年外汇展望:全球货币市场分析与趋势++2025+FX+Outlook:Global+Currency+Market+Analysis+and+Trends.pdf
- 2025全球智能穿戴市场洞察报告.pdf
- GPT系列大语言模型在自然语言处理任务中的鲁棒性.pdf
- Graph4Cache:一种用于缓存预取的图神经网络模型.pdf
- GraphMLP-Mixer:基于图-多层感知机架构的高效多行为序列推荐方法.pdf
- HSEGRL:一种分层可自解释的图表示学习模型.pdf
- 超越GDP:衡量经济和社会表现的重要指标+Beyond+GDP:Measuring+What+Counts+For+Economic+And+Social+Performance.pdf
- 锂电材料行业景气有望见底回升.pdf
文档评论(0)