网站大量收购闲置独家精品文档,联系QQ:2885784924

最小二乘法和线性回归.ppt

  1. 1、本文档共90页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

对回归系数的子集的F检验与对整个回归方程的F检验做法一样。选定显著性水平,比如1%或5%,然后将检验统计量的值与F分布的临界值进行比较。如果统计量的值大于临界值,我们拒绝零假设,认为这组变量在统计上是显著的。一般的原则是,必须对两个方程分别进行估计,以便正确地运用这种F检验。第69页,共90页,星期六,2024年,5月F检验与R2有密切的联系。回想,则,(2.61)两个统计量具有相同的因变量,因此将上面的两个方程代入(2.60),检验的统计量可以写成:(2.62)第70页,共90页,星期六,2024年,5月第四节预测一、预测的概念和类型(一)预测的概念金融计量学中,所谓预测就是根据金融经济变量的过去和现在的发展规律,借助计量模型对其未来的发展趋势和状况进行描述、分析,形成科学的假设和判断。第71页,共90页,星期六,2024年,5月(二)预测原理条件期望(conditionalexpectations),在t期Y的t+1期的条件期望值记作,它表示的是在所有已知的t期的信息的条件下,Y在t+1期的期望值。假定在t期,我们要对因变量Y的下一期(即t+1期)值进行预测,则记作。第72页,共90页,星期六,2024年,5月在t期对Y的下一期的所有预测值中,Y的条件期望值是最优的(即具有最小方差),因此,我们有:

(2.65)第73页,共90页,星期六,2024年,5月(三)预测的类型:(1)无条件预测和有条件预测所谓无条件预测,是指预测模型中所有的解释变量的值都是已知的,在此条件下所进行的预测。所谓有条件预测,是指预测模型中某些解释变量的值是未知的,因此想要对被解释变量进行预测,必须首先预测解释变量的值。第74页,共90页,星期六,2024年,5月(2)样本内(in-sample)预测和样本外(out-of-sample)预测所谓样本内预测是指用全部观测值来估计模型,然后用估计得到的模型对其中的一部分观测值进行预测。样本外预测是指将全部观测值分为两部分,一部分用来估计模型,然后用估计得到的模型对另一部分数据进行预测。第75页,共90页,星期六,2024年,5月(3)事前预测和事后模拟顾名思义,事后模拟就是我们已经获得要预测的值的实际值,进行预测是为了评价预测模型的好坏。事前预测是我们在不知道因变量真实值的情况下对其的预测。第76页,共90页,星期六,2024年,5月(4)一步向前(one-step-ahead)预测和多步向前(multi-step-ahead)预测所谓一步向前预测,是指仅对下一期的变量值进行预测,例如在t期对t+1期的值进行预测,在t+1期对t+2期的值进行的预测等。多步向前预测则不仅是对下一期的值进行预测,也对更下期值进行预测,例如在t期对t+1期、t+2期、…t+r期的值进行预测。第77页,共90页,星期六,2024年,5月二、预测的评价标准1、平均预测误差平方和(meansquarederror,简记MSE)平均预测误差绝对值(meanabsoluteerror,简记MAE)。变量的MSE定义为:MSE=(2.66)其中―的预测值,―实际值,T―时段数第78页,共90页,星期六,2024年,5月变量的MAE定义如下:MAE=,变量的定义同前(2.67)可以看到,MSE和MAE度量的是误差的绝对大小,只能通过与该变量平均值的比较来判断误差的大小,误差越大,说明模型的预测效果越不理想。第79页,共90页,星期六,2024年,5月2、Theil不相等系数其定义为:(2.68)注意,U的分子就是MSE的平方根,而分母使得U总在0与1之间。如果U=0,则对所有的t,完全拟合;如果U=1,则模型的预测能力最差。因此,Theil不等系数度量的是误差的相对大小。第80页,共90页,星期六,2024年,5月Theil不等系数可以分解成如下有用的形式:其中分别是序列和的平均值和

文档评论(0)

xiaozhuo2022 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档