网站大量收购闲置独家精品文档,联系QQ:2885784924

深度学习模型训练优化方法综述:收敛性与泛化性的理论视角 A Survey of Optimization Methods for Training DL Models - Theoretical Perspective on Convergence and Generalization.docx

深度学习模型训练优化方法综述:收敛性与泛化性的理论视角 A Survey of Optimization Methods for Training DL Models - Theoretical Perspective on Convergence and Generalization.docx

  1. 1、本文档共234页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

1

ASurveyofOptimizationMethodsforTrainingDLModels:TheoreticalPerspectiveonConvergenceandGeneralization

jw5665@nyu.

jw5665@nyu.edu

ComputerEngineeringDepartmentofElectricaland

ComputerEngineering

ac5455@nyu.

ac5455@nyu.edu

arXiv:2501.14458v1[cs.LG]24Jan2025ComputerEngineeringDepartment

arXiv:2501.14458v1[cs.LG]24Jan2025

ComputerEngineering

Abstract

Asdatasetsgrowinsizeandcomplexity,itisbecomingmoredifficulttopullusefulfeaturesfromthemusinghand-craftedfeatureextractors.Forthisreason,deeplearning(DL)frameworksarenowwidelypopular.DLframeworksprocessinputdatausingmulti-layernetworks.Importantly,DLapproaches,asopposedtotraditionalmachinelearning(ML)methods,automaticallyfindhigh-qualityrepresentationofcomplexdatausefulforaparticularlearningtask.TheHolyGrailofDLandoneofthemostmysteriouschallengesinallofmodernMListodevelopafundamentalunderstandingofDLoptimizationandgeneralization.Whilenumerousoptimizationtechniqueshavebeenintroducedintheliteraturetonavigatetheexplorationofthehighlynon-convexDLoptimizationlandscape,manysurveypapersreviewingthemprimarilyfocusonsummarizingthesemethodologies,oftenoverlookingthecriticaltheoreticalanalysesofthesemethods.Inthispaper,weprovideanextensivesummaryofthetheoreticalfoundationsofoptimizationmethodsinDL,includingpresentingvariousmethodologies,theirconvergenceanalyses,andgeneralizationabilities.Thispapernotonlyincludestheoreticalanalysisofpopulargenericgradient-basedfirst-orderandsecond-ordermethods,butitalsocoverstheanalysisoftheoptimizationtechniquesadaptingtothepropertiesoftheDLlosslandscapeandexplicitlyencouragingthediscoveryofwell-generalizingoptimalpoints.Additionally,weextendourdiscussiontodistributedoptimizationmethodsthatfacilitateparallelcomputations,includi

您可能关注的文档

文档评论(0)

4A方案 + 关注
实名认证
服务提供商

擅长策划,|商业地产|住房地产|暖场活动|美陈|圈层活动|嘉年华|市集|生活节|文化节|团建拓展|客户答谢会

1亿VIP精品文档

相关文档