网站大量收购闲置独家精品文档,联系QQ:2885784924

协方差与相关系数.ppt

  1. 1、本文档共10页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

问题的提出:对于二维随机向量(X,Y)来说,数学期望E(X)、E(Y)只反映了X与Y各自的平均值,方差只反映了X与Y各自离开均值的偏离程度,它们对X与Y之间相互关系不提供任何信息.但二维随机向量(X,Y)的概率密度p(x,y)或分布列pij全面地描述了(X,Y)的统计规律,也包含有X与Y之间关系的信息.我们希望有一个数字特征能够在一定程度上反映这种联系.协方差与相关系数二、相关系数的概念及性质一、协方差的概念及性质三、协方差的关系式定义:设二维随机向量(X,Y)的数学期望(E(X),E(Y))存在,若E[(X-E(X))(Y-E(Y))]存在,则称它为随机变量X与Y的协方差,记为Cov(X,Y),即Cov(X,Y)=E[(X-E(X))(Y-E(Y))]协方差有计算公式Cov(X,Y)=E(XY)-E(X)E(Y)任意两个随机变量X与Y的和的方差为D(X+Y)=D(X)+D(Y)+2Cov(X,Y)0103021协方差协方差的性质1.2.a,b是常数3.4.定理:Cov(X,Y)=Cov(Y,X)1证明Cov(X,Y)=E[(X-E(X))(Y-E(Y))]=E[(Y-E(Y))(X-E(X))]2=Cov(Y,X)3定理:Cov(aX,bY)=abCov(X,Y),a,b是常数4证明Cov(aX,bY)=E[(aX-E(aX))(bY-E(bY))]=E{[a(X-E(X))][b(Y-E(Y))]}=abE{[X-E(X)][Y-E(Y)]}=abCov(X,Y)50102定理:Cov(X+Y,Z)=Cov(X,Z)+Cov(Y,Z)证明Cov(X+Y,Z)=E{[(X+Y)-E(X+Y)][Z-E(Z)]=E{[(X-E(X))+(Y-E(Y))][Z-E(Z)]}=E{[X-E(X)][Z-E(Z)]+[Y-E(Y)][Z-E(Z)]}=E{[X-E(X)][Z-E(Z)]}+E{[Y-E(Y)][Z-E(Z)]}=Cov(X,Z)+Cov(Y,Z)Cov(X*,Y*)=k2Cov(X,Y)协方差的数值在一定程度上反映了X与Y相互间的联系,但它受X与Y本身数值大小的影响.如令X*=kX,Y*=kY,这时X*与Y*间的相互联系和X与Y的相互联系应该是一样的,但是为了克服这一缺点,在计算X与Y的协方差之前,先对X与Y进行标准化:再来计算X*和Y*的协方差,这样就引进了相关系数的概念.§2相关系数定义:设二维随机变量(X,Y)的方差D(X)0,D(Y)0,协方差Cov(X,Y)均存在,则称为随机变量X与Y的相关系数或标准协方差.因为对一切t,有(tX-Y)2≥0,所以h(t)≥0.从而二次方程h(t)=0或者没有实根,或者只有重根,因而,由二次方程根的判别式知识得|E(XY)|2≤E(X2)E(Y2)|E(XY)|2≤E(X2)E(Y2)引理:对于二维随机向量(X,Y),若E(X2),E(Y2)存在,则有h(t)=E[(tX-Y)2]=t2E(X2)-2tE(XY)+E(Y2)证明:考虑实变量t的二次函数2.1相关系数的性质性质2:|ρXY|=1的充要条件是,存在常数a,b使得P{Y=a+bX}=1.性质1:随机变量X和Y的相关系数满足|ρXY|≤1.性质3:若X与Y相互独立,则ρXY=0.则从而|ρXY|≤1.证明令性质1:随机变量X和Y的相关系数满足|ρXY|≤1.性质2:|ρXY|=1的充要条件是,存在常数a,b使得

P{Y=aX+b}=1证明令由ρXY2=[E(X*Y*)]2≤E(X*)E(Y*)=1知|ρXY|=1等价于[E(X*Y*)]2-E(X*)E(Y*)=0它又等价于h(t)=E[(tX*-Y*)2]=0有重根t0.又因为E(t0X*-Y*)=t0E(X*)-E(Y*)=0所以D(t0X*-Y*)=0,由方差的性质知它等价于P{t0X*-Y*=0}=1,即P{Y=aX+b}=1其中a=t0σ(Y)/σ(X),b=E(Y)-t0E(X)σ(Y)/σ(X).性质3:若X与Y相互独立,则ρXY=0.证明若X与Y相互独立,则E(XY)=E(X)E(Y),又Cov(X,Y)=E(XY)-E(X)E(Y),所以考虑以X的线性函数a+bX来近似表示Y.以均方误差e=E{[Y-(a+bX)]2}=E(Y2)+b2E(X2)+a2-2bE(XY)+2abE(X)-2aE(Y)来

文档评论(0)

SYWL2019 + 关注
官方认证
内容提供者

权威、专业、丰富

认证主体四川尚阅网络信息科技有限公司
IP属地北京
统一社会信用代码/组织机构代码
91510100MA6716HC2Y

1亿VIP精品文档

相关文档