- 1、本文档共9页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
PAGE
PAGE2
陕西科技大学
2015级研究生课程考试答题纸
题号
一
二
三
四
五
六
七
八
九
十
总分
得分
阅卷人
考试科目机械制造与装配自动化
专业机械工程
学号1505048
考生姓名乔旭光
考生类别专业学位硕士
注意事项
1.试题随试卷交回;
2.试卷评阅后,一周内送交研究生秘书处保存;
3.考生类别为学术硕士、专业学位硕士、在职人员攻读硕士学位。
浅谈机器人智能控制研究
摘要:以介绍机器人控制技术的发展及机器人智能控制的现状为基础,叙述了模糊控制和人工神经网络控制在机器人中智能控制的方法。讨论了机器人智能控制中的模糊控制和变结构控制,神经网络控制和变结构控制,以及模糊控制和神经网络控制等几种智能控制技术的融合。并对模糊控制和神经网络控制等方法中的局限性作出了说明。
关键词:机器人;智能控制;模糊控制;人工神经网络
1智能控制的主要方法
随着信息技术的发展,许多新方法和技术进入工程化、产品化阶段,这对自动控制技术提出崭新的挑战,促进了智能理论在控制技术中的应用,以解决用传统的方法难以解决的复杂系统的控制问题。?
智能控制技术的主要方法有模糊控制、基于知识的专家控制、神经网络控制和集成智能控制等,以及常用优化算法有:遗传算法、蚁群算法、免疫算法等。
1.1模糊控制?
模糊控制以模糊集合、模糊语言变量、模糊推理为其理论基础,以先验知识和专家经验作为控制规则。其基本思想是用机器模拟人对系统的控制,就是在被控对象的模糊模型的基础上运用模糊控制器近似推理等手段,实现系统控制。在实现模糊控制时主要考虑模糊变量的隶属度函数的确定,以及控制规则的制定二者缺一不可。
1.2专家控制?
专家控制是将专家系统的理论技术与控制理论技术相结合,仿效专家的经验,实现对系统控制的一种智能控制。主体由知识库和推理机构组成,通过对知识的获取与组织,按某种策略适时选用恰当的规则进行推理,以实现对控制对象的控制。专家控制可以灵活地选取控制率,灵活性高;可通过调整控制器的参数,适应对象特性及环境的变化,适应性好;通过专家规则,系统可以在非线性、大偏差的情况下可靠地工作,鲁棒性强。?
1.3神经网络控制?
神经网络模拟人脑神经元的活动,利用神经元之间的联结与权值的分布来表
中.被控对象是一个具有两个旋转关节的操作臂,每个关节由直流电动机驱动。关节的实际转角通过测速发电机由A/D转换电路获得,其角速度通过SOC的记忆存储器编程来实现。其主要是对操作臂模糊控制系统,分别进行阶跃响应测试和跟踪控制试验.控制结果证明了模糊控制方案具有可行性和优越性。由LinCM等人提出了在模糊控制器结构的基础上,引入PI调节机制达到对阶跃输入的快速响应和达到消除隐态误差的效果.通过相平面上对两种不同区域的启发性分类,可得到一组简单的模糊规则,从而简化了模糊规则库和算法,使最终的控制器易于实现.该控制方案通过仿真实验得到验证。
由邓辉等人提出了一种基于模糊聚类和滑模控制的模糊逆模型控制方法,并将其应用于动力学方程未知的机械手轨迹控制。采用c均值聚类算法构造两关节机械手模糊模型,并由此构造模糊系统的逆模型。在提出的模糊逆模型控制结构中,离散时间滑模控制和时延控制用于补偿模糊建模误差和外扰动,保证系统全局稳定性,并改善其动态和稳态性能。系统稳定性和轨迹误差的收敛性,通过稳定性定理得到证明。
3.2机器人的神经网络控制
神经网络的研究20世纪60年代,并在20世纪80年代得到了快速的发展。近几年来,神经网络研究的目标是复杂的非线性系统的识别和控制等方面,神经网络在控制应用上具有以下特点:能够充分逼近任意复杂的非线性系统;能够学习与适应不确定系统的动态特性;有很强的鲁棒性和容错性等。因此,神经网络对机器人控制具有很大的吸引力。
在机器人的神经网络动力学控制方法中,典型的是计算力矩控制和分解运动加速度控制,前者在关节空间闭环,后者在直角坐标空间闭环。在基于模型计算力矩控制结构中,关键是逆运动学计算,为实现实时计算和避免参数不确定性,可通过神经网络来实现输入输出的非线性关系。对多自由度的机器人手臂,输入参数多,学习时间长,为了减少训练数据样本的个数,可将整个系统分解为多个子系统,分别对每个子系统进行学习,这样就会减少网络的训练时间,可实现实时控制。
由Albus提出了一种基于人脑记忆和神经肌肉控制模型的控制机器人关节控制方法,即CM-CA法。该方法以数学模块为基础,采用查表方式产生一个以离散状态输入为响应的输出矢量。在控制中,状态矢量输入来自机器人关节的位置与速度反馈,输出矢量为机器人驱动信号。也可以利用CMCA模拟机器人
文档评论(0)