- 1、本文档共8页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
十一章
1.解:回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;在线性回归中,按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且自变量之间存在线性相关,则称为多元线性回归分析。
相关分析,相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度,是研究随机变量之间的相关关系的一种统计方法。
相关分析和回归分析是研究客观现象之间数量联系的重要统计方法。既可以从描述统计的角度,也可以从推断统计的角度来说明。所谓相关分析,就是用一个指标来表明现象间相互依存关系的密切程度。所谓回归分析,就是根据相关关系的具体形态,选择一个合适的数学模型,来近似地表达变量间的平均变化关系。它们具有共同的研究对象,在具体应用时,相关分析需要依靠回归分析来表明现象数量相关的具体形式,而回归分析则需要依靠相关分析来表明现象数量变化的相关程度。只有当变量之间存在着高度相关时,进行回归分析寻求其相关的具体形式才有意义。由于相关分析不能指出变量间相互关系的具体形式,所以回归分析要对具有相关关系的变量之间的数量联系进行测定,从而为估算和预测提供了一个重要的方法。在有关管理问题的定量分析中,推断统计加具有更加广泛的应用价值。
需要指出的是,相关分析和回归分析只是定量分析的手段。通过相关与回归分析,虽然可以从数量上反映现象之间的联系形式及其密切程度,但是现象内在联系的判断和因果关系的确定,必须以有关学科的理论为指导,结合专业知识和实际经验进行分析研究,才能正确解决。因此,在应用时要把定性分析和定量分析结合起来,在定性分析的基础上开展定量分析。
2.解:进行回归分析通常要设定一定的数学模型。在回归分析中,最简单的模型是只有一个因变量和一个自变量的线性回归模型。这一类模型就是一元线性回归模型,又称简单线性回归模型。该类模型假定因变量Y主要受自变量X的影响,它们之间存在着近似的线性函数关系,即有
该模型函数式被称为总体回归函数模型。式中的β1和β2是未知的参数,又叫回归系数。Xt和Yt分别是X和Y的第t次观测值。ut是随机误差项,又称随机干扰项,它是一个特殊的随机变量,反映未列入方程式的其他各种因素对Y的影响。
总体回归模型函数事实上是未知的,需要利用样本的信息对其进行估计。
根据样本数据拟合的直线,称为样本回归直线,如果拟合的是一条曲线,则称为样本回归曲线。显然,样本回归线的函数形式应与总体回归线的函数形式一致。一元线性回归模型的样本回归线可表示为
式中的是样本回归线上与Xt相对应的Y值,可视为E(Yt)的估计;是样本回归函数的截距系数,是样本回归函数的斜率,它们是对总体回归系数β1和β2的估计。实际观测到的因变量Yt值,并不完全等于,如果用et表示二者之差(et=Yt-),则有
et
t=1,2,…,n。
上式称为样本回归函数。式中et称为残差,在概念上,et与总体误差项ut相互对应;n是样本的容量。
样本回归函数与总体回归函数之间的联系显而易见。这里需要特别指出的是它们之间的区别:第一,总体回归线是未知的,它只有一条;而样本回归线则是根据样本数据拟合的,有很多条。第二,总体回归函数中的β1和β2是未知的参数,表现为常数。而样本回归函数中的和是随机变量,其具体数值随所抽取的样本观测值不同而不同。第三,总体回归函数中的误差项ut是不可直接观测的。而样本回归函数中的残差项et可以计算出具体数值。
综上所述,样本回归函数是对总体回归函数的近似反映。回归分析的主要任务就是要采用适当的方法,充分利用样本所提供的信息,使得样本回归函数尽可能地接近于真实的总体回归函数。
3.解:设销售收入X为自变量,销售成本Y为因变量。现已根据某百货公司12个月的有关资料计算出以下数据:(单位:万元)
∑(t-)2=425053.73=647.88
∑(t-)2=262855.25=549.8
文档评论(0)