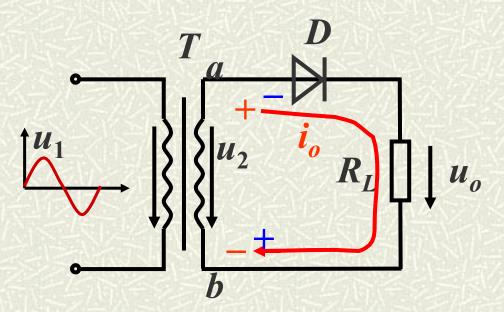

第11章 直流稳压电源

- ▶ 单相整流电路
- ▶滤波电路
- ▶串联型稳压电路
- > 集成稳压器
- > 开关型稳压电路

返回主目录


直流稳压电源的组成和功能

- 电源变压器: 将交流电网电压 u_1 变为合适的交流电压 u_2
- 整流电路: 将交流电压 u_2 变为脉动的直流电压 u_3 。
- 滤波电路: 将脉动直流电压 u_3 转变为平滑的直流电压 u_4 。
- 稳压电路: 清除电网波动及负载变化的影响,保持输出电压 u_0 的稳定。

11.1 单相整流电路

● 单相半波整流电路

二极管导通,忽略二极管正向压降,

$$u_o = u_2$$

二极管截止, $u_o=0$

为分析简单起见,把二极管当作理想元件处理,即二极管的正向导通电阻为零,反向电阻为无穷大。

单相半波整流电路

 u_2 单相半波整流电压波形 $u_{\rm D}$ π u_0 u_{D}

单相半波整流电路

● 输出电压平均值(Uo),输出电流平均值(Io):

$$U_{o} = \frac{1}{2\pi} \int_{0}^{\pi} \sqrt{2}U \sin \omega t d\omega t = \frac{\sqrt{2}}{\pi} U = 0.45U$$

$$U_{o} = \frac{1}{2\pi} \int_{0}^{\pi} \sqrt{2}U \sin \omega t d\omega t = \frac{\sqrt{2}}{\pi} U = 0.45U$$

$$U_{o} = \frac{1}{2\pi} \int_{0}^{\pi} \sqrt{2}U \sin \omega t d\omega t = \frac{\sqrt{2}}{\pi} U = 0.45U$$

$$U_{o} = \frac{1}{2\pi} \int_{0}^{\pi} \sqrt{2}U \sin \omega t d\omega t = \frac{\sqrt{2}}{\pi} U = 0.45U$$

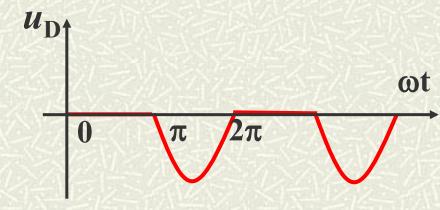
$$U_{o} = \frac{1}{2\pi} \int_{0}^{\pi} \sqrt{2}U \sin \omega t d\omega t = \frac{\sqrt{2}}{\pi} U = 0.45U$$

$$U_{o} = \frac{1}{2\pi} \int_{0}^{\pi} \sqrt{2}U \sin \omega t d\omega t = \frac{\sqrt{2}}{\pi} U = 0.45U$$

$$U_{o} = \frac{1}{2\pi} \int_{0}^{\pi} \sqrt{2}U \sin \omega t d\omega t = \frac{\sqrt{2}}{\pi} U = 0.45U$$

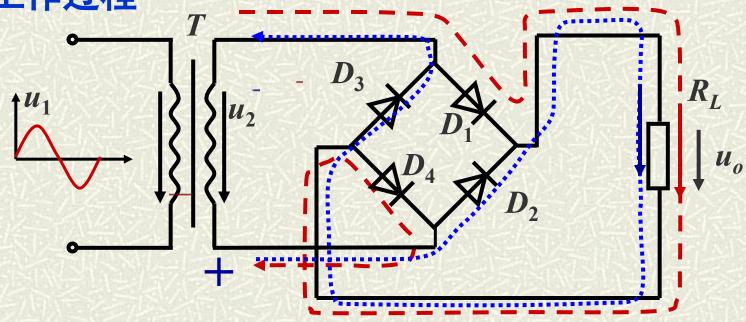
$$U_{o} = \frac{1}{2\pi} \int_{0}^{\pi} \sqrt{2}U \sin \omega t d\omega t = \frac{\sqrt{2}}{\pi} U = 0.45U$$

$$U_{o} = \frac{1}{2\pi} \int_{0}^{\pi} \sqrt{2}U \sin \omega t d\omega t = \frac{\sqrt{2}}{\pi} U = 0.45U$$


$$U_{o} = \frac{1}{2\pi} \int_{0}^{\pi} \sqrt{2}U \sin \omega t d\omega t = \frac{\sqrt{2}}{\pi} U = 0.45U$$

●二极管上的平均电流及承受的最高反向电压:

二极管上的平均电流: $I_D = I_O$

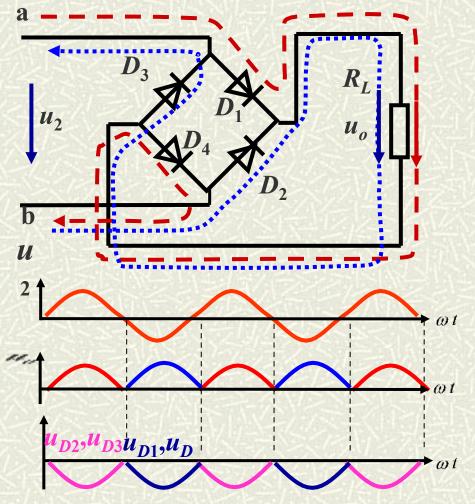

承受的最高反向电压:

$$U_{DRM} = \sqrt{2}U_2$$

单相桥式整流电路

●工作过程

u₂正半周时电流通路


u,负半周时电流通路

 D_1 、 D_4 导通, D_2 、 D_3 截止

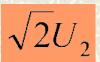
 D_2 、 D_3 导通, D_1 、 D_4 截止

单相桥式整流电路

● 桥式整流电路输出波形及二极管上电压波形

整流输出电压平均值:

$$U_{o} = 0.9 U_{2}$$


负载电流平均值:

$$I_o = U_o / R_L = 0.9 U_2 / R_L$$

二极管平均电流:

$$I_D = I_0/2$$

二极管最大反向电压:

滤波电路

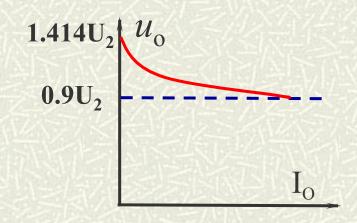
电容滤波电路 R_L 未接入时 (忽略整流电 路内阻) 没有电容 设t,时刻接通 时的输出 电源 波形 $u_{\rm c}$ 充电结束 u_o 整流电路为电 容充电

电容滤波电路

 R_L 接入(且 R_LC 较大)时 (忽略整流电路 内阻) 二极管中的 加入滤波电容 电流 时的波形 无滤波电容 二极管中的电流是 脉冲波。 时的波形

电容滤波电路

电容滤波电路的特点

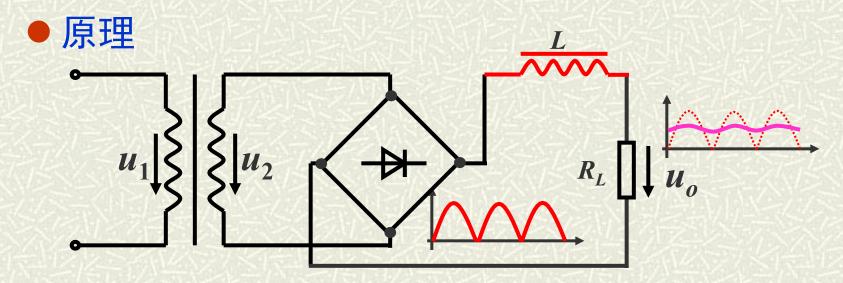

滤波后输出电压直流成份提高了交流成份降低了

外特性:

一般取

$$\tau = RC \ge (3 \sim 5)T/2$$

(T:电源电压的周期)


整流滤波后输出电压: U₀=1.2U₂

二极管承受的最高反向电压 $U_{RM} = \sqrt{2}U_2$ $I_D = \frac{1}{2}\frac{U_O}{R_L} = \frac{0.6U_2}{R_L}$

$$U_{RM} = \sqrt{2}U_2$$

$$I_D = \frac{1}{2} \frac{U_O}{R_I} = \frac{0.6 U_2}{R_I}$$

电感滤波电路

对直流分量: $X_L=0$ 相当于短路,电压大部分降在 R_L 上

对谐波分量: f越高, X_L 越大,电压大部分降在 X_L 上。

因此,在输出端得到比较平滑的直流电压。

当忽略电感线圈的直流电阻时,输出平均电压约为: $U_o=0.9U_2$

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/027146122023010006