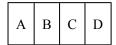
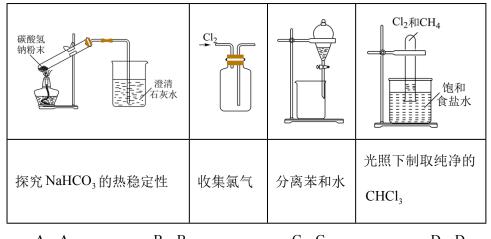
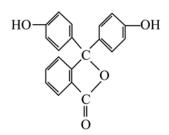
重庆市巴蜀中学校 2023-2024 学年高三下学期 2 月月考(六)


化学试题

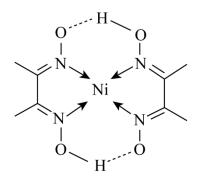

字校:	
-----	--

一、单选题

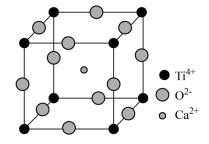

- 1. 每年的诺贝尔化学奖都在 12 月 10 日颁发。关于获奖内容背后的化学知识,下列叙述错 误的是
 - A. 1996年表彰了富勒烯的发现,富勒烯是一种碳氢化合物
 - B. 2011 年表彰了准晶的发现,准晶是一种介于晶体和非晶体之间的固体结构
 - C. 2018年表彰了酶的定向演化,绝大多数的酶是蛋白质,还有少部分的是 RNA
 - D. 2020 年表彰了第三代基因编辑技术,基因的化学本质是脱氧核糖核酸
- 2. 关于非金属氧化物,下列叙述正确的是

 - A. CO、 CO_2 都会导致温室效应 B. SO_2 、 SO_3 都可以用作纸张漂白剂
 - C. NO、NO₂在空气中都会形成酸雨 D. Cl₂O、ClO₂都是酸性氧化物
- 3. 下列离子方程式的书写正确的是
 - A. 向苯酚钠溶液中通入少量 CO_2 : $C_6H_5O^- + CO_2 + H_2O = C_6H_5OH + HCO_3$
 - B. 将铁片插入浓H,SO₄中: 2Fe+9H,SO₄(浓)=2Fe³⁺+6HSO₄+3SO, ↑+6H,O
 - C. 向CuSO₄溶液中通入H₂S气体: Cu²⁺+S²⁻=CuS
 - D. 将少量SO₂通入漂白液中: SO₂+2ClO⁻+H₂O=2HClO+SO₃²⁻
- 4. 已知反应: 2XeF₂+2H₂O=2Xe+4HF+O₂, N₄为阿伏加德罗常数的值, 若生成 4.48L(标 准状况)O₂,下列说法错误的是
 - A. 转移电子数为0.8N_A
- B. 生成的 HF 体积为 17.92L(标准状况)
- C. 生成的还原产物分子数为 $0.4N_A$ D. 消耗 XeF_2 中断裂的共价键数目为 $0.8N_A$
- 5. 下列图示装置中,能达到实验目的的是

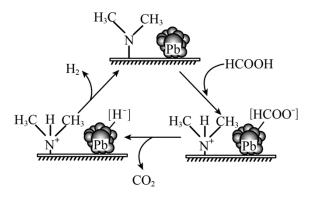
- A. A B. B C. C D. D
- 6. 已知 X、Y、Z、W 是短周期原子序数依次增大的四种元素。其中 Z 的单质是如今常见电子设备的电池负极中失电子的物质,W 的原子序数是 X、Y、Z 三者最外层电子数之和的四倍。下列说法错误的是
 - A. X 是宇宙中含量最高的元素
 - B. Y 元素单质由单原子分子组成
 - C. Z 元素的原子半径是同周期所有元素中最小的
 - D. W 元素既能形成氧化性很强的物质,又能形成还原性很强的物质
- 7. 酚酞是一种常见的酸碱指示剂,在 $pH=0\sim8.2$ 时,酚酞的结构如下图所示,下列有关说法正确的是

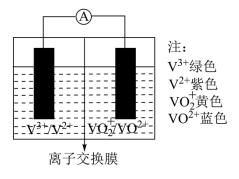

- A. 酚酞分子含有的官能团为羟基、羰基、醚键
- B. 酚酞分子有一个手性碳原子
- C. 酚酞分子可能发生的反应类型有取代反应、加成反应、消除反应
- D. 在滴定实验中指示剂不宜多加,原因是酚酞分子能够与碱反应,产生较大实验误差
- 8. 根据下列实验操作和现象,得出的相应结论正确的是

选	实验操作	现象	结论
项	大心沐 仆	少1.3%	知化

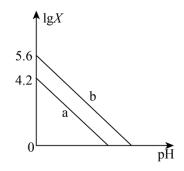

A	乙醇和浓硫酸共热至 170℃,将产生的气体通入酸性 KMnO ₄ 溶液	酸性 KMnO ₄ 溶液褪色	乙醇与浓硫酸 反应生成了乙 烯
В	向蔗糖溶液中加入稀硫酸,加热使蔗糖水 解,一段时间后加入银氨溶液微热	没有出现银镜	蔗糖没有水解
С	利用Cl ₂ 和滴加酚酞溶液的 NaOH 溶液完成喷泉实验	得到红色喷泉,但红色喷泉逐渐变浅最终无色	Cl ₂ 有漂白性
D	将 PbO ₂ 投入稀 H ₂ SO ₄ 酸化的 MnSO ₄ 溶液中,微热	溶液变成紫红色	PbO ₂ 将 Mn ²⁺ 氧化为 MnO ₄

A. A B. B C. C D. D

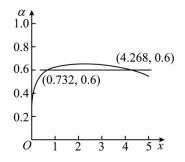

9. 检验 Ni²⁺ 的一种方式是利用丁二酮肟与其形成玫瑰红色的配合物沉淀,配合物分子结构如下图所示,其中四个氮原子和镍离子处于同一平面,下列说法正确的是


- A. 丁二酮肟分子的分子式为 $C_4H_7N_2O_2$
- B. Ni²⁺ 的杂化方式为sp³
- C. 由于丁二酮肟分子间可以形成氢键,推测其水溶性较好
- D. 一个配合物分子中不共平面的原子个数最少为8
- 10. 钙钛矿是指一类组成结构为 ABX_3 的天然矿物质, A 和 B 均代表金属阳离子, X 表示阴离子, 立方 $CaTiO_3$ 的晶胞结构如下图所示, 下列说法错误的是

- A. 推测 Ba²⁺ 可以替代 Ca²⁺ 形成 BaTiO₃ , BaTiO₃ 采取与 CaTiO₃ 相同的晶胞结构
- B. 若将 Ca²⁺ 放在顶点,则 O²⁻ 位于面心和体心
- C. Ti4+填充在由O2-形成的八面体空隙中
- D. 该晶胞中, Ca²⁺与O²⁻共同组成面心立方堆积
- 11. 在催化剂作用下,HCOOH 放氢的反应机理如下图所示。下列说法正确的是


- A. 随着反应过程的进行, Pb 可能会产生损耗
- B. 若用 DCOOH 替代 HCOOH 参与反应,则能在反应体系中检测到 N-D 键
- C. 催化剂能够改变反应历程,从而使热力学不能发生的反应能够发生
- D. 已知甲酸燃烧热的 ΔH 大于氢气燃烧热的 ΔH ,说明图示 HCOOH 放氢的总反应是放热的
- 12. 全钒液流电池(酸性电解质溶液)的示意图如下图所示,在电池工作时,左室溶液由紫色变为绿色。下列说法正确的是

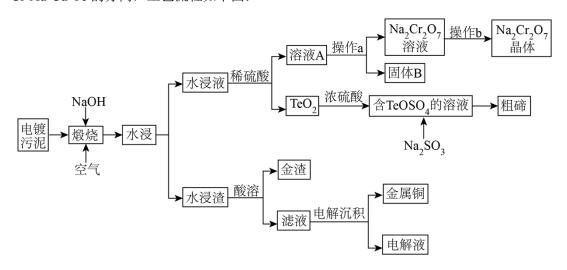
A. 在电池工作时, 右室溶液从蓝色变为黄色


- B. 离子交换膜需要选用质子交换膜,在充电过程中H+从左室向右室移动
- C. 使用该电池电解饱和食盐水时, 当生成了22.4L(标准状况)Cl2时, 左室质量增加2g
- D. 理想状态下,该电池与锂电池获得等量电能时,消耗的还原剂质量比为51:7
- 13. 常温下,向丁二酸 (H_2A) 中滴加 NaOH 溶液,混合溶液中 lgX 与 pH 关系如下图所示,

$$X$$
 表示 $lg \frac{c(H_2A)}{c(HA^{\text{-}})}$ 或 $\frac{c(HA^{\text{-}})}{c(A^{2\text{-}})}$ 。下列说法不正确的是

- A. 直线 a 表示 $lg \frac{c(H_2A)}{c(HA^-)}$ 与 pH 变化关系
- B. 将等浓度等体积的H₂A溶液与NaOH溶液混合后呈酸性
- C. 当溶液为中性时: $c(Na^+)>c(HA^-)>c(A^{2-})>c(H^+)=c(OH^-)$
- D. 已知 ${\rm H_3PO_4}$ 的 $K_{\rm a1}$ = 7.1×10⁻³ , $K_{\rm a2}$ = 6.3×10⁻⁸ , $K_{\rm a3}$ = 4.2×10⁻¹³ ,则 ${\rm Na_2HPO_4}$ 与足量 ${\rm H_2A}$ 反应后生成 ${\rm NaHA}$ 和 ${\rm NaH_2PO_4}$
- 14. 在 T_1 温度下,向 1L 恒容容器中加入 1molCO 和 xmol H_2 ,发生反应

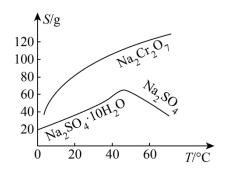
 $CO(g) + 3H_2(g) f$ $CH_4(g) + H_2O(g)$ $\Delta H < 0$,得到 H_2 的平衡转化率 α 随着 x 的变化情况如下 图所示。下列说法正确的是(已知 $\sqrt{13} \approx 3.6$)


A. 起始时向容器中加入0.5mol H_2 , 平衡后再加入1mol H_2 , 再次平衡时 H_2

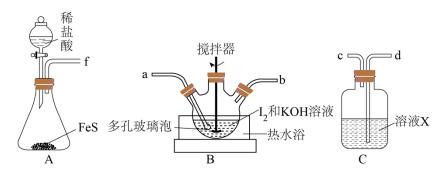
的转化率会减小

- B. 其他条件相同,只改变温度和 H_2 初始投料,使 $K = \frac{1}{3}$,x = 3,此时 H_2 的平衡转化率约为 56.7%
- C. 与 x=0.732 相比, 当 x=4.268 时, 平衡体系中 CH₄ 的体积分数更小
- D. 一定温度下,向 1L 恒容容器中加入 HI(g),使其分解达到平衡
- 2HI(g) f $H_2(g)+I_2(g)$, 当 HI 投料量增大时,HI 的平衡转化率先增大后减小

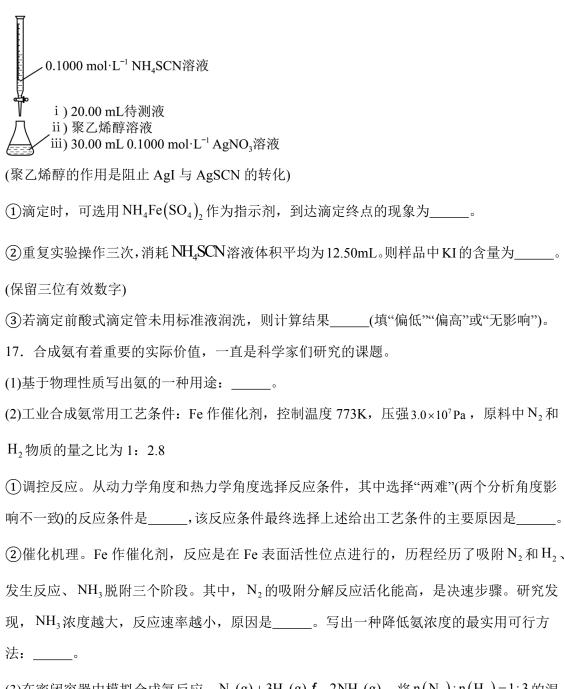
二、解答题


15. 电镀厂阳极产生的电镀污泥中含有大量的重金属物质[主要含有 Cr_2O_3 、 Cu_2Te 及少量单质金(Au)],是一种廉价的二次可再生资源。某科研团队设计了新工艺,该工艺实现了 Cr-Au-Cu-Te 的分离,工艺流程如下图:

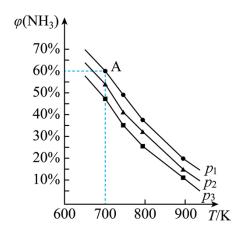
已知: ① 煅烧过程中 Cu₂Te 发生的反应为 Cu₂Te+2O₂ === 2CuO+TeO₂;


- ② TeO₂ 是两性氧化物, 微溶于水。
- (1)基态 Cr 原子的价层电子轨道表示式为____。
- (2)水浸液中的溶质有 NaOH、_____; 水浸渣的成份为 Au、_____。
- (3)获得TeO2的化学反应方程式为____。
- (4)流程中可以循环利用的物质是____。
- (5)已知重铬酸钠和硫酸钠的溶解度随温度的变化关系如下图所示,操作 a 是_____

,操作 b 得到的 Na,Cr,O, 晶体进一步提纯的实验方法是。

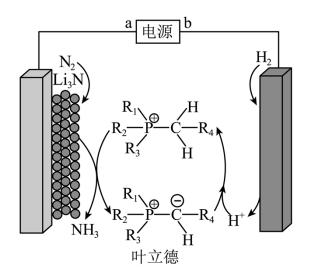


(6)"操作 b"得到的滤液中含有重铬酸钠对水体有污染。常温下,加入焦亚硫酸钠($Na_2S_2O_5$) 将其转化为 Cr^{3+} ,再调节 pH 约为 8,使 Cr^{3+} 沉淀,经上述处理后的滤液,理论上 Cr^{3+} 的浓度约为____。已知:常温下, $K_{sp}[Cr(OH)_3]=6\times10^{-31}$

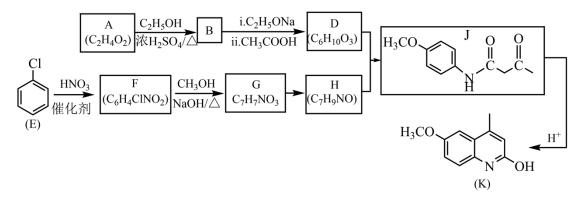

16. KI 可用作制有机化合物及制药原料。医疗上用于防治甲状腺肿大,作祛痰药,还可用于照相制版等。实验小组设计图如下图实验室制备 KI(夹持装置已省略):

- (1)以上各装置的连接顺序是____(用装置编号 A、B、C 回答,装置可以重复使用)。
- (2)图中装置 A 中发生反应的离子方程式为____。
- (3)装置 B 中多孔玻璃泡的作用是_____, 装置 B 中发生的化学反应方程式为____。
- (4)溶液 X 的成分及作用分别是。
- (5)装置 B 中所得 KI 溶液经分离提纯后得到 KI 粗产品,为测定 KI 的纯度,称取 2.0g 样品溶于水配成 100mL 溶液,然后采用银量法测定,用 NH_4SCN 标准溶液滴定过量的 $AgNO_3$,发生反应 $Ag^++SCN^-=AgSCN^-$,实验示意图如下图。

(3)在密闭容器中模拟合成氨反应: $N_2(g) + 3H_2(g) f$ $2NH_3(g)$ 。将 $n(N_2):n(H_2)=1:3$ 的混合气投入恒压反应容器进行反应,在压强 p_1 、 p_2 、 p_3 下,分别测得 NH_3 的平衡体积分数 $\phi(NH_3)$ 随温度变化如下图所示。



①压强 p_1 、 p_2 、 p_3 中,最大的是_____,A 点 N_2 的转化率为_____。


②已知温度为 T_1 K 时, $K_p = 0.03$ M Pa^{-2} 。维持温度为 T_1 K ,若要使 N_2 的平衡转化率达到 30%,则恒压反应容器的总压强至少为_____MPa. (保留小数点后 2 位)

(4)电化学合成氨。可利用氮还原反应在更温和的条件下将 N_2 和 H_2 转化为 NH_3 。研究人员发现,选用三己基十四烷基磷离子作为电解质的阳离子,与叶立德能够很好的完成电化学循环。该电化学装置的工作原理如下图所示。

注: Rn 为烃基。

- ①叶立德结构中碳负原子的杂化方式为____。
- ②写出图中左边电极区由 N₂生成 NH₃的总反应式: ____。
- 18. 有机物 K 合成路线如下图 (部分条件已省略)。

己知:

②
$$R_5$$
— C — OR_6+R_7 — NH_2 — R_5 — C — N — R_7+R_6OH $(R_1 \sim R_7$ 表示烃基)。

请回答下列问题。

- (1)K 的分子式为____。
- (2)A 中官能团的名称是 , G→H 的反应类型是
- (3)B→D 的化学方程式为____。
- (4)F→G 中 NaOH 的作用是____。
- (5)D+H→J 中形成酰胺键。在有机合成中常用酯基和 RNH₂生成酰胺基,而不是用羧基和 RNH₂直接反应生成酰胺基,请结合元素电负性和键的极性解释原因: _____。(元素电负性 H-2.1 C-2.5 O-3.5)
- (6)由 J 生成 K 可以看作三步反应,如下图所示。

$$\begin{array}{c|c} H_3CO & O & O & H^+ & P & \\ \hline (J) & H & C & C & & \\ & & & & & \\ \hline (J) & H & & & \\ \hline (K) & & & & \\ \end{array}$$

- ①P 中有两个六元环结构。P 的结构简式为____。
- (2)Q和K是互变异构关系,K比Q稳定的原因是。
- (7)X 是 D 的同分异构体,符合下列条件的 X 的结构简式是____。
- a. 1molX 能与足量银氨溶液反应生成 4molAg

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问:

https://d.book118.com/055110244311012011